Control and optimization scheduling within a meshed DC microgrid

Igyso Zafeiratou⁽¹⁾, Ionela Prodan⁽¹⁾, Laurent Lefèvre⁽¹⁾, Laurent Piétrac⁽²⁾

⁽¹⁾ Univ. Grenoble Alpes, Grenoble INP, LCIS, F-26000 Valence, France

⁽²⁾ Ampère laboratory, UMR CNRS 5005, Lyon, France

RESEARCH CONTEXT	WHY MESHED TOPOLOGY?	CONTROL METHODS
Complex energy system modellingPower production, transmission and storage	• Interconnection of many autonomous subsys- tems which operate both independently and cooperatively.	• Model Predictive Control for load balanc- ing and cost minimization under operation constraints.
Load balancing and constrained optimizationFault mitigation and reconfiguration	• Detection and avoidance of power losses and faults by changing the transmission line path.	• Mixed-integer non linear programming tech- niques for discrete variable sets (on/off state of the converters)

ARCHITECTURE OF THE MESHED DC MICROGRID

The DC microgrid considered in this research consists of the following physical components:

- 1. three-phase utility grid
- 2. renewable sources as solar panels
- 3. energy storage units
- 4. the transmission lines which are linked through the corresponding switching DC/DC converters

Modelling methodology: Port- Hamiltonian model approach for illustrating the dynamical system

Grenoble

OPTIMIZATION OBJECTIVES

Load balancing:

• Kirchoff's law verification:

$$\sum_{k=1}^{n} I_k = 0$$

$$\sum_{k=1}^{n} V_k =$$

FUTURE WORK

Build a reliable and energy efficient controlled system, that will realize simultaneously the load balancing, the fault detection and the reconfiguration of the complex energy system.

• Difference between the provided load u and the required demand $d_k(t)$:

$$\sum_{k=1}^{n} d_k(t) - \left(u_{UG}(t) + u_1(t) + u_2(t) + \dots + u_n(t)\right) > 0$$

Cost minimization:

Difference between the selling cost C_{SC} and the buying cost C_{BC} : C_{SC} − C_{BC} ≥ 0
State of charge (SoC) of the battery: SoC = 1 − D_B > 0

ACKNOWLEDGEMENTS

This work is funded by the French National Research Agency within the framework of the project ANR-15-CE05-004-02 $C3\mu$ (Components, Control and Communication).

References

[1] G. Escobar, J. van der Schaft, and R. Ortega. A hamiltonian viewpoint in the modeling of switching power converters. Automatica, 35:445–45, 2015.

[2] J. B. Rawlings and D. Mayne. Model predictive control: Theory and design. Nob Hill Pub., 2009.