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Abstract
Conventionally, the basic cells constituting the multicellular energy storage systems are modeled by electrical schemes 
based on Thevenin’s model. Other, more complex models incorporate the aging phenomena, resulting in a decrease in 
the State of Health of each cell. All these models remain analytical models and not discrete event systems. In this article, 
a discrete model is proposed, by detailing how each physical parameter is modeled. It is based on a no-timed Colored 
High-Level Petri Net. An example of a battery is simulated to validate this theoretical model. Its structure (number of cells) 
is declined under different architectures (connections between the cells) and is subjected to different resource dynamic 
allocation strategies. This Petri Net (PN) model makes easy, by adding a sub-network, to simulate different control laws 
and different resource management algorithms, whether or not allow commutations by forbiding all configurations 
that do not meet the specification or that will lead to accelerated cell aging. PN is used as a tool for comparing hardware 
architectures and cell control logic for a battery. Various conventional and innovative architecture are simulate. Different 
control laws can be compared in terms of performance, as lifespan and use of resources.

Keywords Battery · Battery aging · Electric power storage system · Discrete event system · Colored Petri Net

List of symbols
T  Continuous time
�   Dummy discrete time variable
Tcycle  Cycle time (sum of charge, discharge and 

rest times)
i, j  Dummy variable for a row, a column
n, m  Number of rows, columns
Cellij  Cell in row i and column j
Icell , Vcell  Cell current, voltage
Iij , Vij  Current, voltage in row i and column j
�ij  Cellij temperature
SijA… X   Switch A...X in row i and column j
Cbi  Balancing capacitor for row i
Sij+ and Sij−  Balancing switches in row i and column j
a… y  Element node a...y
Iapplc  Current specification

Ibat  Current deliver by the battery
In  Cell nominal current
�a  Ambient temperature
SoC  Fundamental cell State-of-Charge
SoH  Fundamental cell State-of-Health
DoD  Deep of Discharge ( DoD = 1 − SoC )
ESR  Cell Equivalent Series Resistance
OCV  Cell Open-Current Voltage
Rw ,Cw  Cell First order Thevenin model 

parameters
Q  Cell instantaneous electrical charge
Qo  Cell maximum charge, aka operational 

charge
Q∗  Cell theoretical charge, aka cell capacity
Lf   Cell announced lifetime, in number of 

cycles
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RUL  Cell Remaining Usefull Life, in number of 
cycles

Ad  DoD influence parameter for cell aging
At  Temperature influence parameter for cell 

aging

1 Introduction

Accumulator batteries, often simply called batteries, are 
one of the topical technological issues to store electrical 
energy in a middle scale, that is to say for medium dis-
charge time (several minutes to a day) [1]. A battery is an 
assembly of electrical energy storage cells and switches. 
Associate multiple cells in a battery allows it to deliver a 
higher voltage and current than a single cell. Indeed, cell 
values are often too low to meet industrial needs. The 
switches allow to define which cells are active and possibly 
allow to play on the cell intrinsic characteristics, as will be 
described below. These are driven by a Battery Manage-
ment System (BMS) that applies different strategies to acti-
vate or isolate each cell. A BMS is an electronic card with a 
control part, often microprocessor-based, a data acquisi-
tion part specific to each cell and a cell control part with 
electronic switches. It is espacially in order to control the 
operational cells in any type of battery architecture that 
some switches are associated by a cell. The generic scheme 
of Fig. 1 presents a compilation of the different solutions 
present in the literature [2–4]. This element is associated 
in matrix form with a n rows and m columns structure 
battery, noted (n, m). For a Cellij , placed in the ith row and 
the jth column, switch SijA is used to connect the cell in 
series on the same column with those in the upstream and 
downstream rows. The switches SijA and SijZ  when they 
are respectively OFF and ON, allow to disconnect Cellij and 
replace it by a short circuit. The switches SijB , SijC , SijD,..., 
SijX  make possible to distribute the upstream current flow 
from node a to different cells of the downstream row by 
nodes b to x [5] or allow a parallel cell association. Finally, 
the switches Sij+ and Sij− ensure the balancing function, 
which will be presented at point 4.1. In normal operation, 

these two switches are open. Temperature of each cell is 
noted �ij . Usually, there are three major families deployed 
to built a battery: series-parallel architecture (SP), paral-
lel-series (PS) and reconfigurable architecture. This latest 
requires the most switches [6].

Figure  2 shows how the n ∗ m elements are associ-
ated in matrix inside the battery. The BMS consists of two 
hardware parts: one for data collect from the sensors, the 
other for switches control. These two parts are supervised 
by a software part, realizing the synthesis of the orders. 
The BMS data acquisition part collects the measured data 
on each Cellij : voltage Vij , current Iij and temperature �ij . It 
ensures the cell protection, in particular by avoiding over-
loads and deep discharges. Depending on the setpoint, 
the current Iapplic demanded by the external application, it 
can act on the switches and activate or not each cell indi-
vidually. Iapplic is the input instruction. If battery is equipped 
by switches SijA to SijX  , the BMS is also able to restructure 
the connections between the cells. Finally, battery deliver 
Ibat current, conforms to Iapplic . According to the cell data 
values and the Iapplic specification, the BMS control part 
calculates cell characteristic states reflecting their charge 
and their health largely related to aging phenomena and 
determines for each cell whether it should be active or not. 
On the other hand, a cycle is a period during which a fully 
charged cell is first discharged before being recharged. 
Adapted protocols are applied by the BMS to the cells in 
order to avoid any overload which could cause irreparable 
damage to the internal chemistry. They are generally made 
in two steps: first a charge under constant current, second 
under constant voltage (CC-CV charge protocols) [7]. In the 
rest of this paper, a complete recharge of a cell implies that 
it is done according to this protocol.

While many articles speak of continuous modeling or 
neural systems to represent the behavior of batteries, few 
resort to discrete systems by a PN. This article presents a 
discrete model describing the behavior of a single cell as 
well as a multi-cellular battery. Thereby in this study, the 
BMS supervision part is described by a Petri Net (PN). A PN 
is a more general model than an automaton for describing 

Fig. 1  An element: a cell with its switches Fig. 2  Battery control architecture
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a discrete event system (DES). It is valid whatever the type 
of DES. In particular, it allows to model and control the 
behaviors of parallel, distributed, synchronized, commu-
nicating systems and sharing the same resources. The bat-
tery corresponds to this description since several paths 
of electric current circulate into the matrix through the 
cells distributed in rows and columns. Events (opening or 
closing switches) are synchronized and controlled by the 
supervisor. The supervisor forbids all configurations that 
do not meet the specification or that lead to accelerated 
cell aging. So, since it is a matter of controlling the opening 
and closing of switches, it is possible to resort to discrete 
modeling. That’s why in [8], a PN model is used to model a 
photovoltaic panels association on a micro-grid, wind tur-
bines and batteries. The states being associated with the 
source and battery states, so as to optimize the electrical 
flows on the network. Previously, PNs have already been 
used to model single-source system operation modes, 
depending on demand and energy stored amount in [9]. 
Among the different modeling possibilities, a PN associ-
ates formal semantics and visual representation with pre-
cise syntax and a graphical language. The operation of the 
system described by a PN is thus visualized by a synthetic 
structured and compact representation. Formally, a PN has 
properties such as liveliness, boundary, persistence, and 
re-initialization [10]. Dedicated mathematical tools ensure 
to test its properties. By including its BMS and switches, a 
battery can be considered as a DES. A discrete model to 
describe its operation can be established. The transitions 
correspond to switch commutations. Then, an algorithm 
can be implemented to control the cell matrix so as to 
modulate the energy stored in the battery.

The objectives of the application part of this paper are 
limited to compare three different battery architectures, 
regarding their performances on battery lifespan and to 
evaluate them. To do that, PN is presented and used as a 
tool for comparing hardware architectures and cell con-
trol logic. Depending on the state of the cells, the battery 
architecture and the needs of the external load, the BMS 
can activate or not all or part of the cells as their com-
mandability is allowed by the switches. Whatever the bat-
tery architecture and structure, it is relevant to have an 
unique PN model of the battery that can be used to model 
its behavior. Likewise, a discrete model of each control law 
implantable in the BMS permits the study of their effects 
on the battery behavior. To compare the performances of 
each control law associated with each architecture, two 
performance parameters are used: the lifetime before fail-
ure and the remaining life potential in non-defective cells. 
After this analyse, we consider the command by determin-
ing whether to use an optimization algorithm for the cell 
activation improves performances or not. Literature pre-
sents many formal models describing a battery [11–13]. 

A discrete model by a Colored High Level Petri Network 
appears relevant to describe the cell functioning and their 
states since their sequential operation [14]. Furthermore, 
it can take into account aging phenomena. To date, the 
PNs have been used to model many sequential or random 
systems, but not to model the behavior of the cells, both 
in charge and in discharge. It is therefore in this work to 
achieve a discrete model that can be reused in the context 
of a programmable logic controller for running some cells 
and batteries.

In a first step, part 2 of this article is about presenting 
the continuous behavioral model of a cell and its equiva-
lence in a discrete representation. Then, the following part 
shows how, from a cell PN model, a battery model can be 
built. After, Part 4 is devoted to the definition of different 
control laws, before presenting the simulations carried out 
in part 5.

2  Examples of equations

A cell has electrical characteristics such as its terminal 
voltage and the current flowing therethrough. Moreo-
ver, to describe the electric charge contained in the cell, 
two parameters are commonly used: the State of Charge 
(SoC) and the State of Health (SoH), respectively represent-
ing the amount of charge in the cell and the degree of 
wear. These parameters are related to the electric charge 
contained at the moment considered in the cell as well 
as its initial maximum electrical charge and its maximum 
electric charge at the moment considered. In addition, its 
temperature is a major parameter, particularly affecting 
its aging [15]. The behavior of the cell is modeled in the 
discrete event system in part 2.3, after explain it by a con-
tinuous electrical model and an aging model.

2.1  Continuous models

Continuous battery models are based on equivalent 
electrical circuits [16, 17]. Some rely on internal elec-
trochemical behavior [18]. They are mainly used to bet-
ter understand the interactions between chemistry and 
battery performance. Others use neural circuits to refine 
adequacy between cell performance and internal phe-
nomena [19–22]. The model presented in this article does 
not pretend to describe internal chemistry but to be use in 
a programmable logic controller. As a result, it simplify cell 
behavior. The number of cells inside a battery is function of 
power and energy that the battery must deliver. Conven-
tionally, a source of electrical energy is represented by a 
first-order Thevenin generator model, in generator mode 
convention, as represented in Fig. 3a. The model consid-
ers the internal equivalent series resistance (ESR). The 
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currently market-leading technology for batteries is the 
lithium-ion because of its good features in energy density 
and longevity. Indeed, for a cell, the open-circuit voltage 
(OCV) is different according to the electrode nature. A cell 
provides a current Icell with a voltage Vcell . However, this 
model is too simplified to accurately reflect the cell electri-
cal behavior. The second-order model adds to the series 
resistor and the ideal voltage generator a parallel asso-
ciation of a resistance RW and a capacitance CW , so as to 
take the relaxation phenomena into account [23]. Indeed, 
OCV is not directly measurable on cell terminals before a 
time corresponding to the return to thermodynamic equi-
librium [24]. These components, shown in Fig. 3b, corre-
sponding for CW to the double-layer capacitance between 
the electrodes and the electrolyte and for RW to a resist-
ance related to the charge transfer between them.

The SoC parameter represents the electric charge that 
a cell contains at a time T with respect to the maximum 
electric charge that it can contain at this time T, as depict 
by Eq. (1), when Q(T ) is the instantaneous charge at time 
T and Q0(T ) is the maximum electric charge or the opera-
tional charge at same time.

Other more complex models exist [25], based on the cell 
internal chemistry, sometimes dissociating ESR in two, 
according to the Icell current direction. By convention, in 
generator mode, the Icell current is rated positive when the 
cell operates in discharge mode. It is negative when cell 
operates in charge mode. However, these models require 

(1)SoC(T ) =
Q(T )

Qo(T )
,

higher computation times [26] and provide a SoC estima-
tion precision which is often not necessary. Moreover, they 
present a static nature, not reflecting the aging phenom-
ena. The cell aging is measurable by its SoH which repre-
sents the amount of electrical charge that a cell is able to 
store at a time T with respect to its initial maximum electri-
cal charge Q∗ as shown in the Eq. (2). Q∗ is the cell theoreti-
cal electrical charge, also call capacity. As they are reports 
of the same quantities, SoC and SoH varies from 0 to 1.

To describe the continuous but non-linear relationship 
that exists between the open-circuit voltage and the state 
of charge, the formal Nernst’s model [27] uses Eq. (3). The 
three Nernst’s parameters kj for j ranging from 1 to 3 can 
be determined experimentally [28].

2.2  Aging continuous models

The lithium-ion cell aging is carried out in two different 
ways: in a calendar manner and in a cyclic manner [29]. In 
both cases, it results in an operational charge Q0 decrease 
and in a series resistance ESR increase. Aging mechanisms 
are mainly related to the materials used to make the elec-
trodes, the electrolyte composition and the operating 
conditions. Aging is thus accentuated by the following 
parameters:

• the operating anf the storage temperature of the cell;
• the current flowing in the cell;
• the charge variation during a cycle (discharge then 

recharge).

This last point introduces the notion of Deep of Discharge 
(DoD) which translates the difference between the SoC at 
the end of a cycle ( SoCend_of_cycle ) and the SoC at the begin-
ning, which is equal to 1 if cell is fully recharged before. 
DoD is the to-one complement of the SoC, as indicated 
by the Eq. (4).

Other conditions of use can impact the aging rate such 
as the cycle frequency or the accumulation of energy 
extracted cycle by cycle [30]. These complementary points 
are not be modeled here because they only have an influ-
ence at the margin with respect to the influence of tem-
perature, current and DoD.

Realization conditions also impact the way a cell ages 
[31]. To heed this point, a variability will be introduced in 

(2)SoH(T ) =
Q0(T )

Q∗
,

(3)OCV (SoC) = k1 + k2 ⋅ ln(SoC) + k3 ⋅ ln(1 − SoC),

(4)DoD(T ) = 1 − SoC(T ),

Fig. 3  Thevenin electrical equivalent models for a cell
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the cell intrinsic values associated in the simulated batter-
ies: on the initial ESR (which will grow as they age) and on 
the capacity (which will decrease as aging). At the end, the 
aging is measurable by monitoring SoH or Q0 as performed 
on a lithium-ion cell (LiFePo4 ) example with a 60 Ah capacity, 
fully discharged in each cycle, under a 50 ◦C temperature, 
corresponding to an operating temperature in a closed box, 
given in Fig. 4 [32]. This example demonstrate that its lifes-
pan is equal to 400 cycles if it is specified that the cell have 
to be able to store at least 80% of its Q*.

Current influence is mainly felt for high currents, higher 
than the nominal current [33]. The nominal current is worth 
in literal (in Ampere) the cell capacity value (expressed in 
Ampere-hour). That is, for example a nominal current In 
equaling 1.2A for a cell having a 1200 mAh capacity. The 
simulations will be performed considering that the battery 
is not requested beyond its rated current In . This means the 
current is nearly always lower than the nominal current, 
which means that only two parameters are to be consid-
ered for the cell aggravating aging rate: the temperature, 
which influence will be represented by a parameter At and 
the DoD, modeled by a parameter Ad . The respective influ-
ence shapes are given in Fig. 5a for DoD influence and Fig. 5b 
for temperature.

The � parameter represents the DoD influence in aging. 
Typically, it is between −1 and 0 [34]. The Ad parameter 
evolves according to Eq. (5).

The Arrhenius law allows to describe the temperature 
influence in cells. The typical values for the cell activation 
energy EA is between 0.4 and 1eV [35]. The ambient tem-
perature �a is considered here at 25 ◦C . The At parameter 
evolves according to Eq. (6) with K as Boltzmann constant 
( K = 8, 617.10−5eV∕K).

(5)Ad = (1 − DoD)� = SoC
�

end_of_cycle
,

(6)At = e
EA
K

(
1

273+�a
−

1

273+�

)
,

Thus, when a cell is subjected to continuous cycling, 
regularly charged and discharged from the same electri-
cal charge, its SoH decreases over cycling. Equation (7) 
describes the SoH decreasing as a function of cycle num-
ber, counted by the dummy variable �  , where Lf  is the 
announced lifespan (in cycles), given by the cell manufac-
turer for a normal use. SOHlim is the minimum value of the 
SoH from which the cell is considered to be too old, which 
results in an inability to store more than SOHlim times the 
capacity Q∗ . Commonly SOHlim is worth 0.8, especially for 
electric and hybrid vehicle applications [36].

To define the aging of a cell, it is also possible to use the 
notion of remaining usefull lifetime (RUL). Indeed, if the 
RUL is expressed in number of cycles made at temperature 
and DOD defined by the manufacturer, it will decrease by 
one unit at each cycle. When the SoH has reached SOHlim , 
it is considered for simplification that the ESR has doubled 
according to the same variation law as the SoH.

2.3  Cell PN model

To carry out the cell discrete model, the CPN-Tools soft-
ware was use. This open-source tool allows to edit, sim-
ulate and analyze colored PNs. The software includes a 

(7)

SoH(� ) = SoH(� = 0) −
(
1 − SOHlim

)
.

�∑
k=1

[
A
(k)

d
.A

(k)
t

Lf

]
,

Fig. 4  LifePo
4
 cell operational capacity loss by cycling [32]

Fig. 5  LifePo
4
 cell operational capacity loss by cycling [32]
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graphical representation and a command panel, allow-
ing to describe the colors, variables and functions used 
in the graphical interface. The functions are implanted in 
the transition guards or to weight the arcs. To represent a 
cell by a discrete model, the variables describing the cell 
state and operation: SoC, Q(T ) , SoH should be taken as PN 
states. A cell can be in three different states, depending 
on the current value flowing through it: charging, relaxa-
tion or discharging modes. So, a cell PN model is describe 
by Fig. 6. The cell is either functional or not. This is repre-
sented by a life boolean token. Depending on the state 
of the battery ( ≪ relax ≫ , ≪ charge ≫ , ≪ deharge ≫ ) 
the corresponding transition is fired. The token life goes 
through the transition to return to the ≪ cel ≫ state. 
Instead of being returned as it is, it can be modified by 
adding a function on the return arc of each transition. The 
cell can run in a relax mode, if its current Icell is equal to 
zero, in charging mode if its current is negative (energy is 
supplied to the battery) or in discharge mode (write here 
as ≪ decharge ≫ ) if its current is positive.

As a cell discharges, its SoC decreases concomitantly. 
So, expressing the SoC or Q0 is the same. To model the 
Q0(T ) , an integer color (INT) token is used. For that, a PN 
contains a ≪ Qo ≫ state. Its color rank from 0 to QoM, 
an initial value. For example, QoM set here at 1200 for 
a Q0 = 1200 mAh cell. In this net, only one ≪ cycling ≫ 
transition is sufficient. At each end of cycle, the transition 
is fired. At first, it is considered a decrease of one unit on 
the operational charge at each cycle. Also, the Fig. 7 PN 
models its decay. In the Fig. 6 scheme, it is necessary to 
add a ≪ cycling ≫ transition. The token contained in the 
≪ cell ≫ state must thus comprise several color fields: a 

boolean color field for the #life data and an integer for the 
#Qo data field.

Another field of the multicolor token must represent 
the instantaneous electric charge Q(T ) . Figure 8 depicts 
the instantaneous charge calculation. It is modeling in 
the ≪ Qt ≫ state. At each transition firing, the charge 
contained in integer field ≪ Q(t) ≫ token varies by an iDt 
value. Qstar is the initial value, equal to QoM. In the relaxa-
tion phase, it is decremented to simulate self-discharge.

Then, knowing Q0 and Q(t) , it is possible to determine 
the SoC by using Eq.  (1). In order to model the aging 
parameters Ad and At by integer numerical values, line-
arization can be carried out by part, as shown by Fig. 9. 
The black curves represent the parameter evolution 
respectively according to the DoD and the temperature 
� beyond the ambient temperature �a , from Fig. 9. Thus 
Ad varies from 1 to 3 according to the energy extracted in 
the cell during a cycle and At between 1 to 10 depending 

Fig. 6  Cell PN model

Fig. 7  PN modeling operational charge in a cell

Fig. 8  PN modeling instantaneous charge in a cell

Fig. 9  Aging parameters digitization process
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on the cell temperature. These relations between Ad and 
the DoD, as well as between At and temperature, can be 
described by a linearized by-part function named here 
≪ detAd ≫ and ≪ dedAt ≫ respectively. To calculate the 
DoD, two more fields must be added to the multicolored 
token: the maximum value of the instantaneous charge 
at the beginning of a cycle before discharge and the mini-
mum value reached during the cycle, noted here Qmax 
and Qmin. Temperature evolution is current related [37] 
and integrate an equilibrium return when cell is in rest. 
The linear relations between the temperature evolution, 
related to the current value, diminished of a return to ther-
modynamic equilibrium at the ambient temperature are 
then the object of functions allowing to calculate it from 
the current. Current have to be specified in another field 
of the token i.

Consequently, Fig. 10 presents the At and Ad parameter 
evolution model in function of temperature and DoD. The 
function modeling the second aging parameter variations 
is on the same shape. Fields ≪ Ad ≫ , ≪ At ≫ , and ≪ t ≫ 
(for temperature) must be added in the multicolor token. 

In the formulas and tokens of the PN, the temperature � is 
designated by the variable t, to lighten the writing.

Thermal simulation is important for determining the 
storage system performance [38, 39]. There are various 
models that have been published for the SSEEs [40–46]. 
For the present study, the model is limit to a simple growth 
and decrease of the cell temperature according to the 
electrical intensity crossing a cell [37, 47]. In the same 
way, since this study must mainly validate the use of a PN 
in order to describe a cell functioning, the heat transfer 
phenomena between cells [48, 49] which take place in 
the heart of a battery are not taking into account. Then, 
at each end of cycle, the RUL, represented by a ≪ Rest ≫ 
field, must be reduced. In the same way, two other fields 
must be created to describe the evolution of the ESR and 
the OCV, as indicated previously: the fields ≪ Rs ≫ and 
≪ V ≫.

The cell PN model can be obtained by aggregating all 
the previous points. The Fig. 11 presents this model in 
which the ≪ cycle ≫ state counts the cycle number under-
gone by the cell. It is externalized because it is the result of 
the cell intrinsic factors combined to the cycling. The three 
≪ cyclrlx ≫ , ≪ cyclchg ≫ and ≪ cycldech ≫ states (resp. 
relaxation, charge and discharge mode states) model a 
regular cycle. This PN could be further folded, transitions 
and states of the mission profile can be merged. However, 
for the sake of schema legibility, it is preferable not to 
merge beyond, the initial state is given by the data din11 
equation described in formula (8), relating to a single cell, 
when Qomax is equal to Q∗ , Qoal1 is around Q∗ . ta is the 
ambient temperature global variable. In the single cell Fig. 10  PN modeling At parameter

Fig. 11  Single cell PN
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PN, only one switch is modeled. Its ON/OFF state condi-
tions the color ≪ actif ≫ (true or false). Other cells can be 
defined by this way.

To evaluate the cell autonomy (time during which the 
cell can deliver the electrical charge it has stored when 
it runs at is nominal current) and lifespan, the cell must 
be subjected to regular cycling consisting of a discharge 
phase, during T1, a recharge phase (T2) and then a relaxa-
tion phase T3, with same duration [50]. An example of Iapplic 
cycling is presented in Fig. 12 for a 1200 mAh cell. The con-
sidered cycle allows to discharge two-thirds of the capacity 
cell under its nominal current [51] for T1. The three states 
≪ Dtdecharge ≫ , ≪ Dtcharge ≫ and ≪ Dtrelax ≫ repre-
sent the three cycle phases, respectively discharge, charge, 
relaxation. Each state is connected to a corresponding 
transition: ≪ cycldec ≫ , ≪ cyclchg ≫ and ≪ cyclrlx ≫ . 
At any moment, only one transition is firable. When the 
cycle is complete, the transition ≪ cycling ≫ increment 
a counter recording the sudden cycle number, initialized 
to 0. The battery output current should be worth Iapplic for 
the mission to be fulfilled. It consists of the sum of internal 
currents, depending on the architecture.

3  Battery model

According to the general electric scheme of an element 
around a cell (Fig. 1), a battery can respect three ways of 
manufacturing: a cell parallel-series association (PS), a 
series-parallel association (SP) or a reconfigurable archi-
tecture. One example of a reconfigurable architecture is 

(8)din11 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

n = 11, V = 3900, i = Qomax div 6,

Rs = Rs1, Qo = Qoal1,Qt = Qoal1,

Qmax = 0,Qmin = Qoal1,

t = ta + discrete(1, 101) − 1,

Rest = Lf ,Ad = 1, At = 1,

actif = true, life = true

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

used in this article: the C3C architecture (a cell to three 
cells) [6]. After presenting the battery architectures, these 
are translate into a PN model.

The most obvious way is to combine n several cells in 
series by connecting the node a of celli+1,j to the node y of 
the celli;j to let the battery provides output voltage equal 
to n.Vcell . Then this stack of cells can be associated m times 
in parallel with others, to increase the current to m.Icell . This 
reach the series-parallel (SP) architecture. An example with 
n = 2 rows and m = 4 columns is presented in Fig. 13. A 
single switch in series is sufficient to isolate or disconnect 
a column. In consequence, only that of the first row S1jA 
has been useful.

By duality, cells can be firstly associated in parallel by 
connecting all nodes a and all nodes y. Then the stacks of 
cells can be connected in series to increase the voltage. 
Figure 14 shows an example of parallel-series (PS) archi-
tecture with the same structure as in the previous figure. 
Each cell cellij must have its switch SijA to be isolate from 
the rest of the matrix. Apart from the balancing circuits, 
these two architectures only need SijA switches.

Another way to organize the cells inside a battery is to 
use the C3C architecture [6, 52], in which each cell of row i 
and column j is associated by its node a upstream with the 
three cells from the row i − 1 and columns j − 1 , j and j + 1 . 
Similarly, this cell is associated downstream with the cells of 
the row i + 1 and the same three columns by their nodes b, 

Fig. 12  Cycling mission

Fig. 13  Series-Parallel (SP) architecture

Fig. 14  Parallel-Series (PS) architecture
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c and d. An example with the same (2, 4) structure as before 
is shown in Fig. 15. At the Cellij output, the flow can either be 
connected directly to the same column cell, or by the switch 
SijB on the previous column cell, or by the switch SijC on the 
next, respecting the principles described in Fig. 1. The C3C 
architecture needs SijA , SijB and SijC switches but no balanc-
ing switches.

These three solutions are presented with the last col-
umn considered redundant, which also explains the switch 
attendance in the SP and PS schemes. Having inserted addi-
tional cells, which is not practiced in the present industrial 
solutions, allows degrees of freedom in order to better con-
trol cell aging [53]. The switch SijZ is used only to substitute 
a short circuit for the Cellij in a SP architecture and to tolerate 
this cell failure. In PS, only one switch per row Si1Z is needed 
in order to substitute the entire row for a short circuit. In 
C3C, the addition of an SijZ switch per cell is not necessary 
because of the large configuration number in the battery 
[54]. When a cell approaches its failure, it is just as easy to 
isolate it by using only other cells in the same row and let it 
in rest. Other solutions exist to ensure internal reconfigura-
tion. This is the case for example in power tree, developed 
in [55]. Nevertheless, the C3C solution is the only which can 
provide its maximum power. In a SP architecture, the redun-
dancy must at least make a column. Also, for homogeneity 
reasons in this study, in a PS or C3C architecture, a redundant 
cell will also be added to each row. In that situation, nominal 
power delivered is given by Eq. (9).

A battery is, in the three previous cases, constituted of an 
ordered list of cells. Thus, it is possible to model a battery 
from the Fig. 11 scheme, simply by using an ordonned list 
of token containing all the cells. To identify the tokens, it 
is then necessary to add a color specifying the number of 
the cell among the n ∗ m of the battery. A boolean field 
≪ actif ≫ that indicates whether the cell is ON or OFF 

(9)Pn = n.(m − 1).Vcell .Icell ,

must be add too. To summarize, a token includes all of the 
following fields:

n: cell location in the matrix. It is unusual to see bat-
teries of more than ten rows and columns. Beyond that, 
the batteries consist mainly of associated cell packs, con-
nected together. So just two digits are enough to code the 
battery topology. For example, n = 23 for the cell in the 
third column of the second row. To simulate a single cell, 
it is sufficient to use one token with n = 11;

V: OCV, with 3900 (mV) as initial value for a fully charged 
lithium-ion cell;

i: current flowing into the cell. Initially, the cell will be 
considered as entering the discharge phase;

Rs: ESR, initially having a random value of 20 and 
25(m�) for a lithium-ion cell;

Qo: the operational charge, worth a random value of 
±20 (mAh) around mean global variable Q∗ = 1200 mAh;

Qt: instantaneous charge, worth Qo at the beginning;
Qmax: variable used to determine the DoD, initialized to 

zero at the start and at each cycle change. This value cor-
responds to the electrical charge for SoC = SoCend_of_cycle;

Qmin: another variable measured on a cycle to deter-
mine the DoD during the cycle, initialized at Qo and 
updated with Qmax;

t: cell temperature, initialized at room temperature, so 
at 2500 (in hundredth of Celcius degres) with an initial ran-
dom between 0 to +1000(c ◦C) added;

Rest: RUL, equal at the beginning to Lf  , explains in cycle 
number;

Ad: aging parameter associated with the DoD, equal 
to 1 at the beginning, calculated at the end of each cycle 
according to Qmax and Qmin;

At: aging parameter associated with the temperature, 
initialized to 1;

actif: boolean variable that specifies whether the cell is 
used (true) or idle, unconnected (false);

life: boolean variable, true if the cell is usable, or false if 
either Qt or Rest has dropped to 0.

The color is thus associated with the type given by the 
formula (10):

What is more, it is necessary to add the cycling conditions 
and the various control laws that will make it possible to 
determine which cells must be active. In a battery, the 
number of switches is different depending on the archi-
tecture. The ON/OFF state of the switch SijA (Fig. 1) always 
conditions the color actif (true/false). The other switches 

(10)

colset Cell = record

⎡
⎢⎢⎢⎢⎢⎣

n ∶ INT ∗ V ∶ INT ∗ i ∶ INT ∗

Rs ∶ INT ∗ Qo ∶ INT ∗ Qt ∶ INT ∗

Qmax ∶ INT ∗ Qmin ∶ INT ∗ t ∶ INT ∗

Rest ∶ INT ∗ Ad ∶ INT ∗ At ∶ INT ∗

actif ∶ BOOL ∗ life ∶ BOOL

⎤
⎥⎥⎥⎥⎥⎦

Fig. 15  C3C (a cell to three cells) architecture
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implicitly occur in the functions determining the values of 
the token integer fields (V, I, Rs, Qt, Qmax, Qmin). We now 
have a battery PN model whose the values of the differ-
ent field of the token represent all the modeled aspects 
of the cells. The PN formalization has advantages, such as 
the liveliness or the blockage of the system in case of short 
circuit or cycles in the net. In addition, by using a PN with 
implicit time, rather than continuous, any punctual defects 
(imperfections in the current Ibat profile) do not disturb the 
model operation. On the other hand, by using the same 
PN for the behavior of the cells and the battery, the com-
putation is carried out globally, on all the data of each cell.

4  Control laws

The PN with these control laws is intented to replace the 
BMS to control the cells. To control the switches, control 
laws can be established. Some, such as balancing, which 
uses the + and - switches, are today implemented in indus-
trial solutions. Others, conventional, such as inclusion of 
additional cells used in redundancy, are not. Still others of 
an innovative nature, such as activation of the cells accord-
ing to criteria based on their fundamental states, can be 
envisaged.

4.1  Different control laws

The three control laws studied here are:

• the balancing;
• the redundancy cell management;
• the reconfiguration with an optimization algorithm 

according to the cell SoH criterion.

Balancing is a technique commonly deployed in batter-
ies, especially in SP architecture. Indeed, because of the 
disparities that can occur over time between cells on the 
instantaneous charge, the operational charge and the 
ESR, even if the cells are from the same batch, some will 
be recharged faster than others. As the BMS monitors the 
cell SoCs, when it detects excessive imbalance, if battery 
includes balancing circuits, it can homogenize the charges 
contained in the cells. To do this, in a SP architecture, it 
first connects the capacity Cbi in parallel to the Cellaj most 
charged cell thanks to the Saj+ and Saj− switches. Then, it 
connects this capacity to the least charged Cellbj cell with 
the Sbj+ and Sbj− switches. This cell to cell technique can 
improve the charges and consequently improve the bat-
tery lifespan [56]. The same principle of balancing is rep-
resented between a complete row to another in PS archi-
tecture. As already indicated, the C3C does not include 
balancing circuits.

The second studied control law is the redundancy 
management. A battery may comprise more cells than 
necessary to provide its nominal power, the cells being 
solicited under their nominal current. As explain before, 
this nominal current corresponds to this which completely 
discharges the cell in one hour (SoC falling from 1 to 0). To 
improve the battery reliability in the case of cell failure, 
cells can be added redundantly. These redundant cells are 
only used when an initially active cell fails. A cell failure 
corresponds, in this model, to a cell completely empty 
(SoC = 0) or too old ( SoH = 0.8 or Rest = 0).

Finally, these redundant cells can be used dynamically. 
For that, the control law have to reconfigure the connec-
tions between the cells. Rather than activate them only 
in the case of a failure, it is possible to use at any time 
only the cells most able to provide the request current 
Iapplic while reducing their aging and place the others 
at rest. To do this, it is necessary to define a control law 
leading to a battery reconfiguration when the active cells 
less perform than those at rest [5]. SoH is a good indica-
tor to estimate cell aging. These laws behave differently 
according to the architectures, as mentioned in Table 1. 
The balancing is usually implemented in SP architectures 
and is practiced between cells of the same row. It is more 
rarely deployed in PS and can be practiced between rows. 
It can be performed between any two cells in C3C. In SP 
and C3C, redundancy is realized by one column. It is one 
cell per row in PS. The SoH-based optimization algorithm 
must rest the column whose sum of SoH is the lowest, in 
SP architecture. In PS, the more aged cell (with the weak-
est SoH) of each row is placed at rest. In C3C, the lowest 
cell in each row must first be idle before defining the best 
combination between the other cells.

4.2  Battery complete model

To simulate options such as using part of the redundant 
cells and the control laws, it is necessary to add states and 
transitions to the PN, as well as to define functions.

By principle, when a cell is redundant, it is always ini-
tially be the last cell of a row. If redundancy is not actived, 
the battey operating with the only basic cells, the cell #life 

Table 1  Control law comparison

Balancing Redundancy SoH-based algorithm

SP Usual One column best 
∑n

i=1
SoH

PS Possible One cell per row
min

{
SoHm

j=1

}
 at rest

C3C Whatever cell 2 cell One column
min

{
SoHm

j=1

}
 at 

rest and best Cells 
combination
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field is initialized to false. Whether redundancy is enabled 
or not, the end of mission for a battery is reflected by the 
presence of two cells of the same row with a #life data in 
false.

The PN can be used to simulate a (n,m) battery. In this 
case, the ≪ cell ≫ state groups as an ordered list all the 
tokens each representing one of the cells. Its color is Batt, 
as specified by the formula (11). The whole strength of the 
colored PN model is summarized in the fact of being able 
to synthetically create a multi-colored token list. Each of 
the colors represents a physical variable. All the colors of 
the tokens are thus treated at the same time.

The battery structure is found in the functions that will 
vary each cell color value and in the initial conditions. In 
the case of a two rows and four columns structure, the 

(11)Colset Batt = list Cell,

token Bat24 representing this structure is given by the for-
mula (12), with din11 to din24 cells have different initial 
values, in respect with the CPN-Tools spelling.

The complete scheme simulating the three architectures 
and all the variants is given in Fig. 16. The light red ele-
ments are relative to the balancing management, the parts 
in dark red to the redundancy and the parts in green to the 
optimization algorithm. The elements in purple include 
observers to record, for example, the cell cycle number or 
their voltage. At the simulation start, the first firable tran-
sition is ≪ Dtdecharge ≫ . To define the used architecture 
and the control law, it is necessary to initialize the simu-
lation thanks to an initial marking M0 . Indeed, the initial 
marking defines the value of the tokens of each state. 

(12)

val Bat24 =
din11∶∶([din12]∧∧[din13]∧∧[din14]∧∧[din21]∧∧

[din22]∧∧[din23]∧∧[din24]) ∶ Batt

Fig. 16  Complete PN whatever for all the battery architecture
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All meters must be initialized to zero, except ≪ inhib ≫ , 
initialized to 1. The three states representing the mission 
profile are initiated at 4, so as to proceed to a first com-
plete cycling. According to the battery structure and to 
the control law, a M0 function is used to initialize the other 
states. It is the real initial marking. So, M0 is written in the 
CPN-Tools functions section according to the model of the 
formula (13). The initial marking of ≪ redundancy ≫ state 
is a function of M0 , explain in blue as a comment in the 
Fig. 16. The token noted on the right side in the green box 
is that of the ≪ cell ≫ state.

The value 1 for the #archi data in the #archi field is asso-
ciated with a SP architecture, 2 for a PS and 3 for a C3C. 
The applied current in the discharging and in the charging 
phases is given by the value of the #Iapplic data. It can vary 
from once the cell nominal current to m times. When the 
last column is used, the #mactif data is true. The #algor 
data allows to determine if the optimization algorithm 
is used or not. It making ≪ algo ≫ state. Thus, a battery 
operating with a redundant column used in a conven-
tional way have #mactif at true and #algo at false. Finally, 
if the battery includes balancing circuits (between cells of 
the same column in SP, between the rows in PS, comple-
mentary between non-active cells in C3C), the #equil data 
is set to true.

When the state ≪ Valeq ≫ status token allows bal-
ancing (define by #equil field with an initial marking at 
true), the bezeq function, in which paseq is the balancing 
step, examines the cells’ Qt levels and use the subfunc-
tion level. According to the architecture, if an imbalance 
appears, the cells are balanced and the Nbeq counter is 
incremented.

(13)

M0 =
{archi[1… 3], Iapplic[1…m],mactif [true∕false],

algor[true∕false], equil[true∕false]}

Since two different reasons can lead to an active 
cell replacement by the redundant cell: a loss of SoC 
and a loss of SoH, two different transitions are drawn: 
≪ arbitrageBMS ≫ for a SoH default and ≪ arbitrage2 ≫ 
for a SoC default. The part of the network dedicated to 
the algorithm requires two different schemes depend-
ing on whether the architecture is SP, PS or C3C. Indeed, 
it corresponds to the flowchart given in Fig. 17. If the 
cells at rest are not the weakest (parameter at minimum) 
in classical architectures, the configuration is changed 
(Step 1b). The weakest are put to rest. In C3C, it is first 
necessary to reduce the possibility universe (Step 1) of 
all the combinations that comprise the cells placed at 
rest, before calculating the best combination (Step 2) 
and change configuration (Step 3) (Tables 2, 3).   

To allow an arbitration between the control laws 
and the mission profile, the associated transitions 
(  ≪ equal ≫  ,  ≪ arbitrageBMS ≫  ,  ≪ arbitrage2 ≫  , 
≪ algoSoH ≫ ) have a high priority in front of the others.

5  Simulations

A simulation example with this model is presented in 
this part.

Fig. 17  Rest cells choice algorithm

Table 2  Algorithm  1  Bezeq function, to define if the battery need 
balancing

Table 3  Algorithm 2 level function
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5.1  Simulation set

In this model, a transition is fired in a timed sequence. In 
CPN-Tools, transitions can be timed. However, the time will 
be implicitly contained in the passage of certain transitions 
taking Eq. (14) which recalls the relation between the electric 
charge Q, the current I and the time into account. A �T  time 
implied during a transition firing makes possible to translate 
a current in an electric charge. Also, the proposed model 
indirectly considers the time in the transitions. For this mod-
eling, only integer variables are used, to avoid rounding 
errors during the divisions.

Cycle time Tcycle (sum of T1, T2 and T3, resp. charge, dis-
charge and rest times) is fixed at three times 40 minutes 
if the cell is requested under its nominal current. Solution 
deployed in the Fig. 16 PN allows to simulate a phase in 
four steps. The draw of the three associated transitions 
thus implies a ten minutes �T  . For a Q∗ = 1200 mAh cell, 
the electric charge variation during �T  will be 200 mAh. 
During the first cycle, cell is discharged of 800 mAh. The 
three successive states ≪ Dtdecharge ≫ , ≪ Dtcharge ≫ 
and ≪ Dtrelax ≫ represent the three cycle phases. During 
one �T  time, under the nominal current, the temperature 
variation under load is set at +1 ◦C in charge and +6 ◦C in 
discharge. During relaxation, for simplicity, it is considered 
a linear decrease in temperature of −7 ◦C for this same �T  
instead of an exponential equilibrium thermodynamic 
equilibrium time constant.

5.2  Simulation of a (2, 4) battery under different 
architectures

The model has been tested under different battery struc-
tures. The smaller size of the matrix that compares the archi-
tectures requires four columns because in order the C3C to 
function normally, three path possibilities must leave from 
any cell while having an inactive cell in each row. It is also 
necessary to have at least two rows to ensure balancing.

Simulation starts with new cells whose characteristics are 
different from a few per cents around their initial capacity 
and their ESR (#Qt and #Rs datas). The ≪ cell ≫ state is ini-
tialized by the variable Bat24, given by the formula (12) to 
simulate a (2, 4) battery with n = 2 and m = 4 structure. A 
dozen simulations is performed on this network by modify-
ing the initial marking data. By operating the battery under 

(14)Q = I.T ,

its nominal current 3.Icell , it is possible to simulate the follow-
ing variants, for SP and PS: without and with redundancy, 
with balancing circuits, with redundancy and algorithm 
optimization; for C3C: with or without active balancing. The 
parameter chosen to optimize the choice of active cells is 
SoH. Indeed, in the improving operating dependability per-
spective, the SoH appears as the most suitable parameter. 
The simulation stops when the battery can no longer meet 
the demand in current. The token representing the battery 
changes from its initial state, of the type shown in Fig. 16, to 
its final state. In this one, the number of cells with a #life data 
in true is insufficient. Transition fires simulates the charge 
and the discharge of the cells.

Table 4 shows the simulation results performed with cells 
having Lf  equal to 400 cycles. The added +R means that 4th 
column cells are used in redundancy. In the Table, the added 
+bal says that balancing circuits are activated. The added 
+algo means that the optimization algorithm is deployed.

These results show that non-balancing conventional 
architectures have quite similar performances (153 cycles for 
PS, 159 for SP architecture). The battery lifespan is improved 
with the balancing method, both SP and PS (201 cycles 
both). Even if in this latter case, the solution is deployed 
little. On the other hand, the solution with conventional 
redundancy, namely that the spare cell is connected in place 
of the first cell to fail (often by aging), improves availabil-
ity just a little: 160 instead of 153 in PS, 164 instead of 159 
in SP. This is because this new cell must provide high cur-
rents to supplement the aging of other base cells to which 
it is connected. This confirms why this improvement is not 
used in batteries. While in theory it can improve reliability, 
the complexity of the relationships between cell character-
istics means that adding redundant cells does not improve 
lifespan a lot. Finally, an optimization algorithm use to man-
age dynamically the redundancy significantly improves the 
performances (301 cycles for PS, 313 for SP and 320 for C3C 
architecture). Regardless of the architecture, the lifespan 
is significantly increased, approximately doubled for this 
structure. For the C3C architecture, balancing between 
idle cells can also help improve the lifespan, extend to 332 
cycles instead of 320. The results obtained with this simpli-
fied model, using a PN, are similar to those obtained using 
a formal model described in Matlab [5], in particular the 
achievements provided by each control law optimization 
solution are of the same order.

Table 4  PN simulation results: 
battery lifespan in cycle 
numbers

PS PS+R PS+bal PS+algo SP SP+R SP+bal SP+aglo C3C C3C+bal

153 160 201 301 159 164 201 313 320 332
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5.3  Contribution of the discrete model

In addition to prove the interest of the balancing method 
and of the use of an optimization algorithm in the solu-
tions comprising redundant cells, the model allows to clas-
sify the different architecture and command combinations 
according to the quality of the management. At the end of 
simulation for each architecture, the sum of the lifespan 
remaining on the critical row is recorded. The critical row 
has two faulty cells and is responsible for stopping the sim-
ulation. With the PS architecture, the sum of the remaining 
values in the four cell #Rest fields reaches 255 cycles. In 
SP architecture, these same cells only contain a total of 
55 cycles. In C3C this total is reduced to 42 remaining life 
cycles. These values are only valid for the presented simu-
lation and are not generic. With other initial conditions, 
the cells could have aged differently. This value represent 
no-used time lost in the battery. It nevertheless appears 
that the C3C architecture optimizes both the battery aging 
and the cell agings. Furthermore, to highlighting easily 
this phenomena by simply read the data contained in the 
tokens, the discrete model also allows, as expected, to fol-
low in the various fields of tokens the evolution of each 
cell parameter.

6  Conclusions

A battery is a made up of cells and switches. It can thus 
be modeled by a PN model as any discrete event system 
to be implanted in the BMS, which integrates the main 
parameters, such as the temperature, this latter parameter 
contributing largely to the cell aging. The model proposed 
here starts from a single cell and is extended to a bat-
tery. The PN model is used as a tool to compare different 
architectures and control laws. The multi-colored token 
list used allows to treated each color of each token at the 
same time. It can simulate any type of architecture as well 
as several control strategies such as redundancy, balanc-
ing or resource management according to an optimization 
algorithm. In the latter case, the model used demonstrates 
that the cost of adding redundant cells is profitable in 
terms of lifespan when an optimization algorithm is used 
to manage the cells to be active. The results obtained 
on a minimal structure allow to confirm that complexity 
between cell characteristics means that adding redundant 
cells does not improve lifespan. It justify the actual choice 
on balancing. On the other hand, optimizing the activa-
tion of the cells in a battery comprising redundant cells, 
makes it possible to significantly improve the lifespan. The 
model also highlight the new C3C solution homogenize 
the cell agings in a battery. In this way, in a second life use 

perspective [57, 58], all the cells in the same batteries have 
a homogeneous SoH, which will simplify the reuse.
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