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A B S T R A C T

In recent years, the growth of renewable energy production has encouraged the development of new technologies,
such as High-Voltage Direct Current (HVDC) networks, that enhance the integration of such energy sources
to power transmission grids. However, this type of technology introduces new challenges in the way power
transmission systems are controlled and operated, as faster and more complex control strategies will be needed
in a domain which nowadays relies heavily on human decisions. In this context, Discrete Event Systems (DES)
modeling and Supervisory Control Theory (SCT) are powerful tools for the development of a supervisory
control to be deployed in the grid. This paper presents an application of the SCT to HVDC grids and proposes
an implementation method for the resulting supervisors. The proposed method is capable of integrating
decentralized and discrete-event controllers that interact with the continuous-time physical system. The language
chosen for the implementation is C code, as it can be easily incorporated in power system simulation software,
such as EMTP-RV. The method is validated by the simulation of the start-up of a point-to-point link in the
EMTP-RV software.

1. Introduction

The integration of renewable energy sources to the existing electrical
grids is a key issue in the domain of energy transportation. The
development of large High-Voltage Direct Current (HVDC) networks
that bring the power from remote renewable sources to load centers will
increase the complexity of power transmission systems, thus introducing
new challenges in the way these types of systems are controlled and
operated (van Hertem & Ghandhari, 2010; Zhang, Li, & Bhatt, 2010). For
instance, in traditional power transmission systems based on widespread
Alternating Current (AC) technology, large turbo generators are con-
nected to the grid. In consequence, the inertia of their rotating masses
liberates energy that provides resistance against frequency disturbances,
allowing the different frequency control actions to be deployed in a
timescale from 1 to 2 s to 15 to 30 min after the disturbance (Rebours,
Kirschen, Trotignon, & Rossignol, 2007). On the contrary, the lower
energy stocked in HVDC systems provides less resistance against voltage
disturbances. In consequence, the transient generated by the disturbance
will not be compensated in time, and thus the control should react faster
(in the order of 100 ms). In addition, new converter topologies such as
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the Modular Multilevel Converters (MMCs) introduce additional degrees
of freedom for control that increase the complexity of grid operation.
For all these reasons, the need for an automated and coordinated
supervisory control system during grid operation will increase over the
years.

In this context, Discrete Event Systems (DES) modeling and the
Supervisory Control Theory (SCT), first proposed in Ramadge and Won-
ham (1987), offer a formal framework for the synthesis of supervisors
ensuring that the system under control respects a set of behavioral
specifications, imposed by the designer, within its physical limitations.
Moreover, the use of an SCT-based modal approach, such as the one
presented in Faraut, Piétrac, and Niel (2009), would allow to manage the
transition between the different operating modes of an HVDC system:
start-up, fault protection, power ramp, shut-down, etc.

Despite the need to ensure that the interaction between the compo-
nents of complex power transmission networks (highly reconfigurable
and composed of many interconnected components) does not impact
negatively the behavior of the whole system, this problem has not
been treated in the literature. In consequence, the authors proposed a
method for the synthesis of a decentralized supervisory control system
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for HVDC grids in Romero Rodríguez, Delpoux, Piétrac, Dai, Benchaib,
and Niel (2017). In the current paper, the aspects regarding the practical
implementation of the theoretical supervisors for the start-up of a point-
to-point link obtained in Romero Rodríguez et al. (2017) are addressed.
Because it is desired to implement the supervisory control in power
system’s specific simulation software such as EMTP-RV (Mahsered-
jian, Dennetière, Dubé, Khodabakhchian, & Gérin-Lajoie, 2007) or its
real-time simulation counterpart HYPERSIM (Do, Soumagne, Sybille,
Turmel, Giroux, Cloutier, & Poulin, 1999), the implementation method
presented here is based on common user oriented languages, such as C
code.

A number of papers have contributed to the implementation of
the supervisors obtained with the SCT over the last decades, for
the most part related to the control of manufacturing systems based
on widespread Programmable Logic Controllers (PLCs). Consequently,
most of the related works in the literature try to adapt the SCT
framework to the programming languages defined by the International
Electrotechnical Commission in the IEC 61131-3 standard (International
Electrotechnical Commission, 2003), especially to the most popular
graphical languages: Ladder Diagram (LD) and Sequential Function
Chart (SFC). While the methods developed in de Queiroz (2002), Fabian
and Hellgren (1998), Gouyon, Pétin, and Gouin (2004), Lauzon, Mills,
and Benhabib (1997), Leal, da Cruz, and Hounsell (2012) and Ramirez-
Serrano, Zhu, Chan, Chan, Ficocelli, and Benhabib (2002) are all
based on LD, those presented in Charbonnier, Alla, and David (1995)
and Vieira, Santos, de Queiroz, Leal, Neto, and Cury (2017) are SFC-
based. However, the particular syntax of those languages offers little
portability for the proposed methods to be applied outside PLC-based
environments.

In addition, because the future development of multi-terminal DC
(MTDC) grids might imply a combinatorial explosion during the syn-
thesis of the supervisors, a decentralized architecture that localizes
the control is suitable. Thus, the implementation method requires
that the information communicated between the different controllers
should be taken into account, as opposed to previous contributions,
where only centralized (Balemi, 1992; Cantarelli & Roussel, 2008) and
modular (de Queiroz, 2002; Vieira et al., 2017) architectures with no
communication between controllers were contemplated.

The remainder of this paper is organized as follows. Section 2
reviews the fundamentals of DES modeling and SCT. A case study is
presented and a decentralized supervisory control for the start-up of
an HVDC system is synthesized in Section 3. In Section 4, the proposed
implementation method is presented and the simulation results obtained
in the EMTP-RV software are shown. At last, conclusions are drawn in
Section 5.

2. Background

This section reviews the basic notions of DES modeling, along with
the fundamentals of SCT and the control architectures that can be
derived from the synthesized supervisors.

2.1. Discrete event systems

A DES is a discrete-state, event-driven system which does not depend
on time and whose state evolution depends entirely on the occurrence
of asynchronous discrete events (Cassandras & Lafortune, 2008). Based
on the property of controllability, it is possible to divide the event set
𝛴 into two subsets, i.e. 𝛴 = 𝛴𝑐 ∪ 𝛴𝑢, where 𝛴𝑐 and 𝛴𝑢 are respectively
the set of controllable and uncontrollable events. The occurrence of an
event in 𝛴𝑐 (resp. 𝛴𝑢) can (resp. cannot) be prevented by a supervisor
𝑆. The concatenation of the events 𝜎𝑖 ∈ 𝛴 (𝑖 = 1,… , 𝑛) forms finite
sequences (or strings) which are all represented by the infinite set 𝛴∗,
derived by the operation called Kleene-closure (*):

𝛴∗ = {𝜀 ∪ 𝜎1 ∪ 𝜎2 ∪ 𝜎3 ∪ 𝜎1𝜎2 ∪ 𝜎1𝜎3 ∪…}, (1)

where 𝜀 is the empty string. Thus, a language 𝐿, which is a finite set of
finite-length strings formed from events in 𝛴, is a subset of 𝛴∗ (𝐿 ⊆ 𝛴∗).
A language is said to be prefix-closed if any prefix 𝑡 ∈ 𝛴∗ of any string
𝑠 ∈ 𝐿 is also an element of 𝐿 (𝐿 = 𝐿), with 𝐿 consisting of all the
prefixes of all the strings in 𝐿:

𝐿 ∶= {𝑠 ∈ 𝛴∗ ∶ (∃𝑡 ∈ 𝛴∗) [𝑠𝑡 ∈ 𝐿]}. (2)

A deterministic automaton 𝐴 can be defined as a six-tuple 𝐴 =
(𝑋,𝛴, 𝑓 , 𝛤 , 𝑥0, 𝑋𝑚), where 𝑋 is the set of states, 𝛴 is the finite set of
events associated to 𝐴 and 𝑓 ∶ 𝑋 × 𝛴 → 𝑋 is the partial transition
function. This function can be extended to 𝑓 ∶ 𝑋 ×𝛴∗ → 𝑋 in a natural
way. Moreover, 𝛤 ∶ 𝑋 → 2𝛴 is the active event function representing
the set of all events 𝜎 for which a transition 𝑓 (𝑥, 𝜎) is defined at state
𝑥. Finally, 𝑥0 ∈ 𝑋 is the initial state and 𝑋𝑚 ⊆ 𝑋 is the set of marked
states that represent the completion of a task.

We distinguish between the language 𝐿(𝐴) generated by 𝐴 and the
language 𝐿𝑚(𝐴) marked by 𝐴. While 𝐿(𝐴) represents all the strings 𝑠
starting from the initial state and whose transition function 𝑓 is defined
at (𝑥0, 𝑠):

𝐿(𝐴) ∶= {𝑠 ∈ 𝛴∗ ∶ 𝑓 (𝑥0, 𝑠)} is defined, (3)

the language marked by 𝐴 is formed by the strings 𝑠 that start from the
initial state and end at a marked state (𝑓 (𝑥0, 𝑠) ∈ 𝑋𝑚):

𝐿𝑚(𝐴) ∶=
{

𝑠 ∈ 𝐿(𝐴)∶ 𝑓 (𝑥0, 𝑠) ∈ 𝑋𝑚
}

. (4)

An automaton is said to be non-blocking when all its states are
accessible from 𝑥0 and co-accessible, that is, 𝑋𝑚 can be reached from
state 𝑥. Then, 𝐿𝑚(𝐴) = 𝐿(𝐴).

2.2. Supervisory control theory

The SCT was first proposed in Ramadge and Wonham (1987). Based
on language theory and DES modeling, the SCT aims to synthesize a
supervisor that ensures by construction that the behavior of the system
(also called plant) under control remains admissible with respect to a
set of specifications. The plant is modeled in the form of an automaton
𝐺 and is independent of the control objectives as it represents the
physical process. The designer then models in the same form the control
specifications to be imposed on the uncontrolled plant in order to
restrict its behavior within the subset 𝐾 ⊆ 𝐿𝑚(𝐺). Then, conforming
to the SCT, a non-blocking supervisor 𝑆 exists such that 𝐿𝑚(𝑆∕𝐺) = 𝐾
and 𝐿(𝑆∕𝐺) = 𝐾, with 𝐾 ⊆ 𝐿𝑚(𝐺) and 𝐾 ≠ ∅, if and only if the
controllability condition (𝐾𝛴𝑢 ∩ 𝐿(𝐺) ⊆ 𝐾) and the 𝐿𝑚(𝐺)-closure
condition (𝐾 = 𝐾 ∩ 𝐿𝑚(𝐺)) are respected. If 𝐾 is not controllable,
the largest sublanguage of 𝐾 that is controllable, with 𝐿𝑚(𝐺)-closure
condition, can be computed. Formally, the supervisor 𝑆 for the plant
𝐺 is a function that maps each word of the language of 𝐺 to the set of
controllable events which are enabled after the occurrence of that word.
Meantime, the set of feasible uncontrollable events cannot be disabled
by the supervisor 𝑆. So for a string 𝑠 ∈ 𝐿(𝐺), 𝑆(𝑠) is defined according
to Cassandras and Lafortune (2008):

𝑆(𝑠) = [𝛴𝑢 ∩ 𝛤 (𝑓 (𝑥0, 𝑠))] ∪
{

𝜎 ∈ 𝛴𝑐 ∶ 𝑠𝜎 ∈ 𝐾
}

. (5)

In the first term of (5), the supervisor enables after string 𝑠 all
uncontrollable events that are feasible in 𝐺. In this way, a feasible
uncontrollable event is never disabled. In the second term of (1), all the
controllable events that extend 𝑠 inside of 𝐾 are allowed. The language
marked by the closed-loop 𝑆∕𝐺 is defined as follows:

𝐿𝑚(𝑆∕𝐺) ∶= 𝐿(𝑆∕𝐺) ∩ 𝐿𝑚(𝐺), (6)

where 𝐿𝑚(𝑆∕𝐺) ⊂ 𝐿(𝐺) is strictly contained in the language generated
by 𝐺 and it corresponds to the optimal behavior of 𝐺 under the
supervision of 𝑆. In a centralized or monolithic control architecture
(Fig. 1), the automaton representing a supervisor is typically automaton
𝑆∕𝐺 itself.
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Fig. 1. Centralized control architecture (Cassandras & Lafortune, 2008).

Fig. 2. Decentralized control architecture (Cassandras & Lafortune, 2008).

In a decentralized architecture (Fig. 2), however, each decentralized
controller 𝑆𝑖 (𝑖 = 1,… , 𝑛) receives an observed string obtained through
a projection operation 𝑃𝑖 ∶ 𝛴∗

𝐺 → 𝛴∗
𝑖 , which takes a string formed from

the larger event set 𝛴𝐺 and deletes the events in it that do not belong
to the smaller event set 𝛴𝑖:

𝑃𝑖(𝜀) ∶= 𝜀,

𝑃𝑖(𝜎) ∶=
{

𝜎 if 𝜎 ∈ 𝛴𝑖,
𝜀 if 𝜎 ∈ 𝛴𝐺 ⧵ 𝛴𝑖,

𝑃𝑖(𝑠𝜎) ∶= 𝑃𝑖(𝑠)𝑃𝑖(𝜎) for 𝑠 ∈ 𝛴∗
𝐺 , 𝜎 ∈ 𝛴𝐺 .

(7)

The projection 𝑃𝑖 is then extended to the language 𝐿(𝐺) ⊂ 𝛴∗
𝐺 by

simply applying it to all the strings in the language.
Because several controllers may have common events in their alpha-

bets, thus establishing an implicit communication with other controllers
via the system, the decentralized control structure is built on the joint
action of all 𝑛 decentralized supervisors. In Yoo and Lafortune (2002),
two fusion rules for merging the control actions of the individual
supervisors are defined. In this paper, a conjunctive fusion rule based
on the intersection of enabled events (or equivalently, disjunction of
disabled events) is considered. The control action given as a result of the
fusion of the individual behaviors of both supervisors is 𝑆𝑑𝑒𝑐 (𝑠). Thus, for
𝑛 decentralized supervisors, the global control map 𝑆𝑑𝑒𝑐 (𝑠) ∶ 𝐿(𝐺) ⟶
2𝛴 is defined as follows:

𝑆𝑑𝑒𝑐 (𝑠) =
𝑛
⋂

𝑖=1
𝑆𝑖(𝑠). (8)

According to Yoo and Lafortune (2002), such a supervisory control
for 𝐺 exists and is non-blocking if:

• 𝐾 is controllable with respect to 𝐿(𝐺) and 𝛴𝑢,
• 𝐾 is 𝐿𝑚(𝐺)-closed,
• 𝐾 is CP-coobservable with respect to 𝐿(𝐺), the set of locally

observable events 𝛴𝑜,𝑖 and the set of locally controllable events
𝛴𝑐,𝑖 (𝑖 = 1,… , 𝑛).

The language 𝐾 is said to be CP-coobservable if for all string 𝑠 ∈ 𝐾
and for all event 𝜎 ∈ 𝛴𝑐 =

⋃𝑛
𝑖=1 𝛴𝑐,𝑖, at least one of the supervisors that

can control 𝜎 knows unambiguously that it must disable 𝜎. Moreover,
the synthesized supervisors are minimally restrictive if their closed-loop
language is equivalent to that of a monolithic supervisor (𝐿(𝑆∕𝐺) =
⋂𝑛

𝑖=1 𝐿(𝑆𝑖∕𝐺) and 𝐿𝑚(𝑆∕𝐺) =
⋂𝑛

𝑖=1 𝐿𝑚(𝑆𝑖∕𝐺)). If this is not the case, a
solution is given in Overkamp and van Schuppen (2000).

3. Supervisory control of an HVDC link

Existing HVDC systems have been generally limited to point-to-point
links (Fig. 3) operated by human action. The future integration of multi-
terminal DC (MTDC) grids with multiple interconnected MMC stations
represents a huge change in the way power systems are operated. It is
thus important to correctly abstract the physical behavior of the grid
components in order to develop a discrete control structure capable
of interacting with the controlled station that evolves in continuous
time. Then, later in this section and following a modular approach, the
grid plant is constructed as the composition of several stations and a
centralized supervisor is synthesized. Finally, the centralized supervisor
is decentralized into local supervisors that communicate between them,
in order to reduce the size of the automata to be implemented. Thus, a
supervisory control for the start-up of a point-to-point link is obtained.
The material in this section is largely borrowed from Romero Rodríguez
et al. (2017).

3.1. Modeling of a controlled station

Due to the MMC topology (Lesnicar & Marquardt, 2003) and the
DC cables nature, the HVDC grids have predominantly a capacitive
behavior. In consequence, any variation of the DC voltage can be
interpreted as the charging/discharging of an equivalent grid capacitor.
Therefore, in the case of finite-time voltage variations, the voltage
always reaches a steady state. Based on this steady-state behavior,
the system can be naturally abstracted into discrete models. Also, we
consider that all events are observable, since the state of the system can
be inferred from the current and voltage measurements.

Fig. 3 shows the controllable components in a point-to-point link
of a symmetrical monopole topology (DeBoeck, Tielens, Leterme, &
Hertem, 2013). On the DC side, the converter can be connected or
disconnected from the HVDC cables (one for each pole) through the
DC Circuit Breakers (DCCB). The same function is realized on the
AC side by the AC Circuit Breakers (ACCB). The MMC is described
in Lesnicar and Marquardt (2003). It consists of a set of capacitive
submodules connected in six parallel arms. In order for the MMC to
operate properly, these capacitors need to be pre-charged. When the
control of the capacitors is active, the MMC is said to be deblocked.
Otherwise, it stands in blocked state. As the current cannot be controlled
in blocked state, the Pre-Insertion Resistor (PIR) module is active during
the pre-charging in order to restrict the surge current within the safety
limits. When the converter is controlled, the PIR module is deactivated.

Fig. 3. Point-to-point HVDC architecture.
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Fig. 4. Controlled station model 𝐺𝑖 (𝑖 ∈ {1, 2}).

At the initial state, the voltage in the submodules is zero, and so
they need to be pre-charged to their rated voltage through a start-up
procedure for the proper operation of the MMC. It is assumed in this
paper that no fault occurs during the start-up. Among different start-up
methods (Das, Nademi, & Norum, 2011; Gao, Li, Xu, Chu, Wang, & Li,
2014; Li, Xu, Zhang, Yang, Wang, Wang, & Xu, 2015; Yu, Ge, Lei, Wang,
Yang, & Gou, 2013), we consider a self-excited charging strategy, similar
to the one presented in Yu et al. (2013). Two stages can be identified
in the start-up procedure: (i) an open-loop charging phase where the
MMC is uncontrolled and the capacitors control is blocked; and (ii)
after the capacitor has been charged sufficiently to deblock the MMC,
a closed-loop charging phase where the MMC capacitors are controlled.
Since both MMC are charged from one AC grid, they have different
roles depending on their position: when the MMC is connected to the
supplying AC side, it is called source converter; on the contrary, when
the MMC is charged passively from the DC link and disconnected from
its AC side during start-up, it is called remote converter.

Following the formalisms in Section 2, we define the model 𝐺𝑖 (𝑖 ∈
{1, 2}) in Fig. 4 for the station in source role (string of events in the upper
path) and remote role (string of events in the lower path). The transitions
crossed by a line are activated by the occurrence of a controllable
event, while those uncrossed are labeled by an uncontrollable event. It
is therefore possible to derive from the state transition diagram in Fig. 4
the set of events 𝛴𝐺𝑖

∶=
{

𝛴𝑐 𝐺𝑖
, 𝛴𝑢𝑐 𝐺𝑖

}

, with 𝛴𝑐 𝐺𝑖
= (Close DCCBi,

Close ACCBi, Deblock SMi) and 𝛴𝑢𝑐 𝐺𝑖
= (Start Uci, End Uci, End Cci,

Stabilized). The initial state is 0 ∈ 𝑋𝐺𝑖
with 𝑋𝐺𝑖

being the set of states.
As both paths in the state transition diagram direct to the marked state
11, the language marked by 𝐺𝑖 is non-blocking: 𝐿(𝐺𝑖) = 𝐿𝑚(𝐺𝑖). The list
of transitions in 𝐺𝑖 for each role, along with their physical meaning, is
presented next:

• f (0, Close DCCBi) = 1. In state 0, all the circuit breakers of the
station are open. This transition represents the closing of the local
DCCB. The closure of the DCCB is necessary for the DC cables to
be charged by the source converter, or for the remote converter to
be charged by the DC cables.

• f (1, Close ACCBi) = 2. This transition represents the connection of
the source MMC to its AC side. It is up to the operator to determine
which AC grid is to be used to charge the HVDC system. The
activation of the PIR module can also be associated to this event.

• f (2, Start Uci) = 3. After the closure of the ACCB, the current enters
the HVDC link from the feeding AC grid. This current creates a
voltage rise in the MMC capacitors and, upon its detection, the
uncontrollable event Start Uci is generated.

• f (1, Start Uci) = 6. If there is a current circulating through the
remote MMC capacitors while it stands in blocked state and that
the ACCB has not been closed, the measured voltage rise means a
distant station has been connected to the corresponding AC grid,
and the converter is being charged from the DC link.

• f (3, End Uci) = 4 and f (6, End Uci) = 7. The End Uci event
is generated when the voltage measured in the MMC capacitors
reaches a steady state at the end of the open-loop energization and
that a certain voltage threshold is attained. This voltage threshold
is previously fixed and is different between the source and remote
roles.

Fig. 5. Physical constraints 𝐺𝑐 .

• f (4, Deblock SMi) = 5 and f (7, Deblock SMi) = 8. The voltage level
reached at the end of the uncontrolled charging allows the MMC
capacitors to be controlled, which effectively starts the closed-
loop energization. The deactivation of the PIR module can also
be associated to this event.

• f (5, End Cci) = 10 and f (8, End Cci) = 9. This event is generated
upon arrival of the MMC capacitors voltage to the steady state at
the end of the closed-loop energization. The voltage threshold is
the same in both roles, and it corresponds to the rated voltage of
the converter.

• f (9, Close ACCBi) = 10. This transition represents the connection
of the remote MMC to its AC grid, at the end of the controlled
charging.

• f (10, Stabilizedi) = 11. The station is not fully operational until
the voltages in the MMC and the DC cables are stabilized. Once
the measured voltages correspond to the rated value and no large
oscillations are observed, the event Stabilized is generated and the
marked state 11 is reached.

3.2. Centralized architecture for start-up control

From the 𝐺𝑖 model of each station, an automaton for the entire grid
can be built through parallel composition. The parallel composition is
an operation between automata denoted by ∥ (Cassandras & Lafortune,
2008). Using the Supremica software (Akesson, Fabian, Flordal, & Malik,
2006), we are able to generate a new plant automaton 𝐺′ = 𝐺1 ∥ 𝐺2
for the entire point-to-point system, where 𝛴𝐺′ = 𝛴𝐺1

∪ 𝛴𝐺2
. The

parallel composition of 𝐺1 and 𝐺2 is the automaton 𝐺′ = 𝐺1 ∥ 𝐺2 ∶=
𝐴𝑐(𝑋𝐺1

× 𝑋𝐺2
, 𝛴𝐺1

∪ 𝛴𝐺2
, 𝑓 , 𝛤1∥2,

(

𝑥0𝐺1
, 𝑥0𝐺2

)

, 𝑋𝑚𝐺1
× 𝑋𝑚𝐺2

), where

𝑓
((

𝑥𝐺1
, 𝑥𝐺2

)

, 𝜎
)

∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝑓1
(

(𝑥𝐺1
), 𝜎

)

, 𝑓2
(

(𝑥𝐺2
), 𝜎

))

if 𝜎 ∈ 𝛤1(𝑥𝐺1
) ∩ 𝛤2(𝑥𝐺2

),
(

𝑓1
(

(𝑥𝐺1
), 𝜎

)

, 𝑥𝐺2

)

if 𝜎 ∈ 𝛤1(𝑥𝐺1
) ⧵ 𝛴𝐺2

,
(

𝑥𝐺1
, 𝑓2

(

(𝑥𝐺2
), 𝜎

))

if 𝜎 ∈ 𝛤2(𝑥𝐺2
) ⧵ 𝛴𝐺1

,

undef ined otherwise,

and therefore 𝛤1∥2

(

𝑥𝐺1
, 𝑥𝐺2

)

= [𝛤1(𝑥𝐺1
) ∩ 𝛤2(𝑥𝐺2

)] ∪
[

𝛤1(𝑥𝐺1
) ⧵ 𝛴𝐺2

]

∪
[

𝛤2(𝑥𝐺2
) ⧵ 𝛴𝐺1

]

.
Since its event set only includes local event, 𝐺𝑖 is valid for both the

source and the remote converter. However, even though local models
are valid for local control, they do not cover all the behaviors that appear
in the system when several stations are coupled. Thus, the language
𝐿(𝐺′) contains illegal strings either because they lead to states that are
physically impossible or because they violate some safety constraints
that we wish to impose. The dependence in the ordering of events
between the linked stations is not captured in 𝐿(𝐺𝑖) and it is thus
necessary to define a plant 𝐺𝑐 that models the physical constraints
introduced by the DC link (Fig. 5) and that completes the grid plant
modeling obtained by composition of the station automata.
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Fig. 6. MMCs voltage behavior during start-up.

Fig. 7. Specification 𝐻𝐺𝑖
(𝑖 = 1, 2; 𝑗 = 1, 2; 𝑖 ≠ 𝑗).

Each string in 𝐺𝑐 represents the order in which the MMC reaches
the different steady-state voltages, depending on its role as the source
or remote converter. For example, if MMC1 is the source converter, the
voltage increase in its capacitors (Start Uc1) will naturally be detected
first in its arms and later in the remote MMC arms. Then, as MMC2 is
dependent on the HVDC grid, it will logically reach the end of the open-
loop and closed-loop (End Uc2, End Cc2) charging later than the source
MMC. Finally, it is necessary to distinguish the Stabilizedi event between
the two stations in local model 𝐺𝑖 because in a complex network all
voltages might not stabilize at the same time. In our case, as there is only
one line, the two stations stabilize simultaneously once both AC grids are
interconnected and the power balance is established; so Stabilized1 and
Stabilized2 are merged into one common event Stabilized. All the states
are marked because the plant models the physical behaviors imposed by
the HVDC link. Then the global grid model 𝐺 is obtained as 𝐺 = 𝐺′ ∥ 𝐺𝑐 .

Given the capacitive behavior of the MMC and the HVDC cables, a
voltage evolution similar to the one presented in Fig. 6 is expected for
the start-up of a point-to-point link for the considered strategy. There
exist multiple strings of events that could occur during the start-up but,
for the considered strategy, only those shown in Fig. 6 originate an
acceptable voltage behavior in the capacitors of the MMCs. In order to
obtain the desired behavior, the set of strings of 𝐿𝑚(𝐺) must be restricted
within the subset 𝐾 ⊆ 𝐿𝑚(𝐺) according to the control specifications that
we wish to enforce on the language generated by 𝐺.

Conforming to the SCT, these specifications are declared in the form
of specification automata 𝐻𝐺𝑖

(𝑖 ∈ {1, 2}). The automata 𝐻𝐺𝑖
in Fig. 7

prevent the two stations from connecting to their respective AC grid
before all the DCCBs in the HVDC link are closed, thus ensuring a safe
start and a complete energization of the DC cables and both MMCs.
The global specification automaton 𝐻𝐺 = 𝐻𝐺1

∥ 𝐻𝐺2
is declared, with

𝛴𝐻𝐺
= (Close DCCB1, Close DCCB2, Close ACCB1, Close ACCB2).

According to the Supervisory Control Theory (Cassandras & Lafor-
tune, 2008), to enforce the correct alternation of events during the start-
up imposed by 𝐻𝐺 with respect to the global grid plant 𝐺, we synthesize
a Centralized Grid Supervisor 𝐶𝐺𝑆 (Fig. 8), that dynamically enables
or disables controllable events of 𝐿𝑚(𝐺) to respect the specification
𝐻𝐺. The automaton 𝑅𝐶𝐺𝑆 = 𝐺 ∥ 𝐻𝐺 in Fig. 9 is a realization of
𝐶𝐺𝑆, such that 𝐿𝑚(𝑅𝐶𝐺𝑆 ) = 𝐿𝑚(𝐶𝐺𝑆∕𝐺) and 𝐿(𝑅𝐶𝐺𝑆 ) = 𝐿(𝐶𝐺𝑆∕𝐺).
In our case the admissible marked language is obtained by forming
𝐾 = 𝐿(𝐻𝐺) ∩ 𝐿𝑚(𝐺) which is guaranteed to be 𝐿𝑚(𝐺)-closed. In 𝐻𝐺,
all forbidden events are controllable, so the controllability condition is
satisfied.

Fig. 8. Feedback loop for centralized supervisory control.

3.3. Decentralized architecture for start-up control

As the grid size increases, so does the size of the centralized
supervisor. Given that the implementation of such automata might
be difficult, other control architectures minimizing the size of the
supervisory control automata need to be considered. Because of the need
for coordination between stations in HVDC systems, a decentralized
control (Lin & Wonham, 1988; Rudie & Wonham, 1992) that enforces
local control and minimizes the number of events to be transmitted
should be taken into account. In this way, the events that are not critical
for the tracking of the system state can be removed from the supervisor
alphabet while ensuring a correct operation.

The decentralized control structure is built on the joint action
of two local Decentralized Grid Supervisors (𝐷𝐺𝑆). Formally, given
admissible supervisors 𝐷𝐺𝑆1 and 𝐷𝐺𝑆2, each defined for 𝐺, we define
the decentralized supervisor 𝑆′ corresponding to the intersection of all
𝐷𝐺𝑆𝑖 as follows: 𝑆′(𝑠) ∶= 𝐷𝐺𝑆1(𝑠) ∩ 𝐷𝐺𝑆2(𝑠) (Fig. 2). The controlled
system generates 𝐿(𝑆′∕𝐺) = 𝐿(𝐷𝐺𝑆1∕𝐺) ∩ 𝐿(𝐷𝐺𝑆2∕𝐺) and marks
𝐿𝑚(𝑆′∕𝐺) = 𝐿𝑚(𝐷𝐺𝑆1∕𝐺) ∩ 𝐿𝑚(𝐷𝐺𝑆2∕𝐺). The strings observed in the
local station suffice for the control of the local station.

However, given that the specification 𝐻𝐺 must be respected in
order to obtain an admissible start-up, the events in the alphabet
𝛴𝐻𝐺

must be communicated between 𝐷𝐺𝑆1 and 𝐷𝐺𝑆2 so that the
CP-coobservability property is satisfied. Therefore the local alphabets
𝛴1 = 𝛴𝐺1

∪𝛴𝐻𝐺
and 𝛴2 = 𝛴𝐺2

∪𝛴𝐻𝐺
are determined. On these alphabets

we calculate 𝐷𝐺𝑆1 and 𝐷𝐺𝑆2 such that 𝐿(𝐷𝐺𝑆1) = 𝑃1(𝐿(𝐶𝐺𝑆∕𝐺)) and
𝐿𝑚(𝐷𝐺𝑆1) = 𝑃1(𝐿𝑚(𝐶𝐺𝑆∕𝐺)). Similarly, 𝐿(𝐷𝐺𝑆2) = 𝑃2(𝐿(𝐶𝐺𝑆∕𝐺))
and 𝐿𝑚(𝐷𝐺𝑆2) = 𝑃2(𝐿𝑚(𝐶𝐺𝑆∕𝐺)). 𝑃1 and 𝑃2 are obtained by the
projection operation 𝑃𝑖 ∶ 𝛴∗

𝐺 → 𝛴∗
𝑖 (𝑖 ∈ {1, 2}).

The synthesized supervisors are minimally restrictive in that 𝐿(𝐷𝐺𝑆1
∕𝐺)∩𝐿(𝐷𝐺𝑆2∕𝐺) = 𝐿(𝐶𝐺𝑆∕𝐺) and that 𝐿𝑚(𝐷𝐺𝑆1∕𝐺)∩𝐿𝑚(𝐷𝐺𝑆2∕𝐺) =
𝐿𝑚(𝐶𝐺𝑆∕𝐺). In practice, the realizations 𝑅𝐷𝐺𝑆1

and 𝑅𝐷𝐺𝑆2
of 𝐷𝐺𝑆1 and

𝐷𝐺𝑆2 are two observers (Cassandras & Lafortune, 2008) for 𝑅𝐶𝐺𝑆 with
the partitions 𝛴𝑅𝐶𝐺𝑆

= 𝛴𝐺 = 𝛴1 ∪ 𝛴𝑢𝑜1 and 𝛴𝑅𝐶𝐺𝑆
= 𝛴𝐺 = 𝛴2 ∪ 𝛴𝑢𝑜2,

where 𝛴𝑢𝑜1 = 𝛴𝑅⧵𝛴1 and 𝛴𝑢𝑜2 = 𝛴𝑅⧵𝛴2. As the control actions of 𝐷𝐺𝑆1
and 𝐷𝐺𝑆2 are limited to the first states, where a local event is forbidden,
it is therefore possible to reduce the local supervisors (Vaz & Wonham,
1986), thus obtaining as a result the realizations 𝑅𝐷𝐺𝑆1𝑟

and 𝑅𝐷𝐺𝑆2𝑟
that

minimize the number of states such that 𝐿(𝑅𝐷𝐺𝑆𝑖𝑟
∕𝐺) = 𝐿(𝑅𝐷𝐺𝑆𝑖

∕𝐺)
and 𝐿𝑚(𝑅𝐷𝐺𝑆𝑖𝑟

∕𝐺) = 𝐿𝑚(𝑅𝐷𝐺𝑆𝑖
∕𝐺) for 𝑖 ∈ {1, 2}. Fig. 10 presents the

automaton 𝑅𝐷𝐺𝑆𝑖𝑟
, where the events forbidden by the supervisor are

labeled by the dashed transitions.
The number of events in the supervisor’s alphabet have been effec-

tively limited while ensuring an admissible start-up. Also, even if there
exist communication delays, grid stability is not affected by control
decentralization as the voltage is in steady state when the control
actions associated to the 4 controllable events included in 𝛴𝐻𝐺

are
generated. Finally, in the case a short-circuit fault occurs, fast protection
algorithms (Loume, Bertinato, Raison, & Luscan, 2017) would react
locally to bring the system to a safe steady state. Then, the supervisory
control could resume its control actions.
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Fig. 9. Automaton 𝑅𝐶𝐺𝑆 such that 𝐿𝑚(𝑅𝐶𝐺𝑆 ) = 𝐿𝑚(𝐶𝐺𝑆∕𝐺) and 𝐿(𝑅𝐶𝐺𝑆 ) = 𝐿(𝐶𝐺𝑆∕𝐺).

Fig. 10. Automaton 𝑅𝐷𝐺𝑆𝑖𝑟
for supervised start-up (𝑖 ∈ {1, 2}).

4. Supervisory control implementation method

As we wish to integrate the obtained theoretical supervisors in power
system simulation software such as EMTP-RV, some transformations
have to be made before they are implemented as C code. Indeed, the
gap between the hypothesis made in the SCT and the real conditions
in computer-based environments has to be filled. First in this section,
a literature review on the difficulties encountered when implementing
SCT-based supervisors is presented. Then, the implementation method
proposed by the authors is detailed and applied to the automata for
the start-up control of an HVDC link obtained in the previous section.
Finally, the simulation results for the considered case study are shown.

4.1. Implementation problems

Fabian and Hellgren (1998) identified the main problems encoun-
tered during the implementation of abstract supervisors into PLCs.
Recently, a thorough review on the synthesis and implementation of
logic controllers has been made in Zaytoon and Riera (2017). Given that
PLCs are industrial digital computers, these problems are extensible to
all computer-based environments and can be resumed in the following:

• Avalanche effect : occurs when a change in the value of an input
signal activates an event that triggers many successive transitions;
the controller then jumps through an arbitrary number of states.

• Simultaneity : relates to the incapability of the controller to distin-
guish the order of occurrence of two events within the same scan
cycle, because the input signals are read at the beginning of the
scan cycle.

• Causality : arises when the implemented supervisor is forced to
generate commands so that the plant can evolve in response, as
opposed to the SCT, where the plant is supposed to generate all
the events in its event set.

• Choice: appears when the controller has to choose between the
generation of two or more concurrent commands, thus introducing
a non-determinism issue.

• Inexact synchronization: is due to the communication delay be-
tween the plant and the controller. Thus, the occurrence of an
event in the former is not immediately reproduced in the latter,
unlike in SCT (Kumar, Garg, & Marcus, 1991). This could lead to
a wrong control action by the controller.

While the avalanche effect issue can be resolved by means of clever
programming and resetting the controller signals (Fabian & Hellgren,
1998), the simultaneity and inexact synchronization problems are in-
herent to this type of implementation. Although the interleave insensi-
tivity and the delay insensitivity properties are respectively introduced
in Fabian and Hellgren (1998) and Balemi (1992) as a solution to the
simultaneity and the inexact synchronization issues, such properties
are not often satisfied in practice. In Leal et al. (2012), the authors
propose to associate the events that may pose such problems to PLC
variables that force an interruption in the hardware, and interrupting
the processing of further inputs in consequence. However, many PLCs
do not have this kind of variables, as pointed out by the authors.
In this paper, because the implementation in a simulation software
such as EMTP-RV is considered, the scan cycle of the control program
is fixed to be significantly smaller than the time constants of the
system. Nevertheless, because of the fast dynamics of HVDC grids, other
hardware such as microcontroller may be more suitable than PLCs for
real-time applications.

Regarding the causality problem, in a real system, as opposed to the
SCT, the plant does not generate all the events in its event set, but it
rather evolves in response to given commands. In consequence, Balemi
(1992) introduces the forcing event approach: the controller generates
the commands (identified as the controllable events by the author),
while the plant generates the responses of the system (i.e. the uncon-
trollable events). Because the controller has to generate commands in
accordance with the supervisor’s control map but also with the physical
limitations of the plant, the automaton recognizing the supremal con-
trollable language is implemented. This implies that only centralized
architectures can be realized. In opposition, Charbonnier et al. (1995)
introduces the supervised control approach, which clearly differentiates
the supervision and command generation tasks within the controller.
The supremal controllable language is ensured by a closed-loop control,
as an automaton modeling the plant generates all the events from
the I/O signals, while the supervisor disables them according to its
control policy. This separation of tasks allows to modify the supervisor
structure independently of the command generation, thus offering the
possibility to integrate different architectures, such as the modular
control in de Queiroz (2002), Leal et al. (2012), Lopes, Leal, Rosso, and
Harbs (2012) and Vieira et al. (2017).

Furthermore, as previous works in the literature consider the case
where the controller sends to the plant all generated commands that may
be concurrent themselves, different criteria have been proposed for the
extraction of a deterministic controller in order to resolve the choice is-
sue. In other words, such criteria erase from the controller the command
generation paths that could introduce non-determinism (Dietrich, Malik,
Wonham, & Brandin, 2002; Lopes et al., 2012; Malik, 2002). In Leal et al.
(2012), the authors propose the command generation to be selected ran-
domly by an external routine. In power transmission systems, however,
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Fig. 11. Control structure in a decentralized architecture.

it is preferred to let the TSO decide which of the alternative commands
is generated depending on each scenario. Such decision could be the
result of an offline study done by the operator before the grid is put into
operation. Thus, previous solutions would limit the range of decision
or could eventually lead to unstable situations if chosen randomly. In
consequence, the notion of triggering is introduced later in this paper.

Finally, the implementation of a supervisory control for power
transmission systems, which are continuous-time systems, implies an
additional difficulty with respect to prior art, which mainly treats
manufacturing systems. Indeed, in manufacturing systems, because
the controller is typically connected to the sensors and actuators of
the physical system through Boolean-valued signals, the responses of
the system are generated when a change in the value of a Boolean
variable is detected. In time-driven systems in general, and in power
transmission networks in particular, this is no longer valid, as the
responses are generated from continuous-time signals, such as voltage
and current measurements. In this case, the occurrence of an event is
detected when the state trajectory of the considered variables crosses a
certain threshold (Zhao, Mi, & Ren, 2006). The controller should then
integrate a low-level interface that details within the control system
the continuous-time conditions indicating the occurrence of a discrete
event.

4.2. Proposed implementation method

As stated in Section 3, a decentralized control architecture is best
suited for the control of HVDC systems and so the supervised control
approach (Charbonnier et al., 1995) is considered. The decentralized
control system proposed in this paper is formed by local controllers
in each station. Each controller is composed of the Supervision, Logic
Control and Interface levels (Fig. 11), which contain the supervisory
control system under the form of C code functions. These control levels
communicate through signals between them within the local controller
and with the remote controllers. The rest of the section details the tasks
shown in Fig. 12.

4.2.1. Model preparation
In order for the different control levels to communicate, an input

and output alphabet is attached to the automata, which transforms
them into Moore or Mealy machines. However, the transition functions
of the theoretical automata may need to be modified so that the
language recognized by the automata remains unchanged and the state-
machines remain deterministic when the I/O alphabets are added (Task
1 of Fig. 12). The algorithms proposed by Vieira et al. (2017) for
the conversion of the plant automata in view of their transformation
into Moore machines (Moore, 1956) are considered in this paper. A
Moore machine has the property that its output function 𝜔 depends
only on the current state of the machine, but not on the transition
reaching the state, i.e. 𝜔∶ 𝑋 → 𝑂. The supervisor automata can be
directly transformed into Moore machines, because the disabling signals

Fig. 12. Workflow of the implementation method.

generated in the states, which form the output alphabet 𝑂 of the Moore
machine 𝑆𝑀

𝑖 (𝑖 ∈ {1,… , 𝑛}), are independent of the transition’s input
alphabet 𝐼 . This is not the case for the plant automata 𝐺𝑖, and thus the
two algorithms proposed in Vieira et al. (2017) convert the plants 𝐺𝑖
into equivalent automata 𝐺′′

𝑖 where each state is reached by only one
event. Thus, the Moore machines 𝐺𝑀

𝑖 remain deterministic when adding
the I/O alphabets as the outputs generated at each state are known and
differentiated for a given set of inputs.

Case study : the algorithms defined in Vieira et al. (2017) are applied
to the theoretical controlled station model of Fig. 4. Because the plant
𝐺𝑖 does not present any self-loop transitions, the first algorithm does
not apply, as 𝐺𝑖 = 𝐺′

𝑖 and only the second algorithm is used. The
converted plant 𝐺′′

𝑖 is shown in Fig. 13. As can be observed, the state 10
of 𝐺𝑖 is now decoupled into states (10, EndCci) and (10, CloseACCBi).
In this way, each state is reached by a unique event, except for the
initial state (0,∅), which is not associated to any event. The theoretical
decentralized supervisor of Fig. 10 does not need any transformation
before the addition of an input and output alphabet.

4.2.2. Supervision level
The Supervision level contains a realization of the supervisor au-

tomaton. It prevents the Logic Control level from generating prohibited
strings of commands, so that the real plant respects the behavioral
specifications defined by the developer. The Supervision level takes
as inputs the Boolean events signals generated by the Logic Control
(Fig. 11). For this, the input and output alphabets are added to the
supervisor automaton (Task 2 of Fig. 12). The input expressions labeling
the transitions of the Moore machines 𝑆𝑀

𝑖 (𝑖 ∈ {1,… , 𝑛}) are defined by
the expression (E1):
(E1) 𝜎 = 1

This condition is fulfilled whenever the associated event signal 𝜎 is
activated by the Logic Control. On the other hand, the output expression
(E2) is formed by the local disabling signals 𝜎𝑑𝑖 in the set of disabling
signals 𝐷𝑀 (𝜎𝑑𝑖 ∈ 𝐷𝑀 ), generated in any given state whenever an event
𝜎 ∈ 𝛴 must be disabled next by 𝑆𝑀

𝑖 :
(E2) 𝜎𝑑𝑖 = 1

In a decentralized architecture, the set of remote controllers with 𝜎 in
their alphabet will similarly generate in their states a remote disabling
signal 𝜎𝑑𝑗 ∈ 𝐷𝑀 , with 𝑗 ∈ {1,… , 𝑛} and 𝑗 ≠ 𝑖. Then, a logical function
that merges the remote disabling signals and the local disabling signals
associated to an event 𝜎 is defined by following the conjunctive fusion
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Fig. 13. Converted plant 𝐺′′
𝑖 (𝑖 ∈ {1, 2}).

1 void superv i sor ( . . . ) {
2 s t a t i c i n t s t a t e = 0;
3

4 switch ( s t a t e ) {
5 case 1:
6 ∗CloseACCBjd_i = 1;
7 ∗CloseACCBid_i = 1;
8 i f ( CloseDCCBi ) {
9 s t a t e = 1;

10 }
11 i f ( CloseDCCBj ) {
12 s t a t e = 2;
13 }
14 break ;
15 . . .
16 }
17 }

Listing 1: Supervision function

rule described in Section 2.2 (Task 3 of Fig. 12). For this, a signal
𝜎𝑑 ∈ 𝐷𝑀 is associated in each control system to the controllable events
that are generated locally at the considered control system. The merged
disabling signal 𝜎𝑑 is activated when at least one of the disabling signals
(𝜎𝑑1, . . . , 𝜎𝑑𝑛) deactivates the occurrence of the corresponding event 𝜎.
This is shown in expression (E3) for the case of two supervisors:
(E3) IF (𝜎𝑑1 = 1 OR 𝜎𝑑2 = 1) THEN 𝜎𝑑 = 1

Therefore, in order to achieve CP-coobservability, the common
events in the supervisor’s alphabets are transmitted from the Logic
Control level of the local control system to the Supervision level of
the remote control system so that at least one of the controllers knows
unambiguously that it has to disable a given event (remote event signals
in Fig. 11). The expressions (E1), (E2) and (E3) are defined as generic
expressions that can be interpreted and implemented as C code.

Case study : the expressions (E1), (E2) and (E3) are associated to the
supervisor automaton in Fig. 10 under the form of C code by following

1 void d i s a b l i n g _ s i g n a l s ( . . . ) {
2

3 ∗CloseACCBid = CloseACCBid_i | | CloseACCBid_j ;
4

5 ∗CloseDCCBid = CloseDCCBid_i | | CloseDCCBid_j ;
6

7 . . .
8

9 }

Listing 2: Disabling signals disjunction function

the criteria of controllability and CP-coobservability described before,
as shown in Listing 1. First, an integer variable 𝜐𝜎 is associated to each
event 𝜎 in the automaton 𝑅𝐷𝐺𝑆𝑖𝑟

(𝑖 ∈ {1, 2}) and the expression (E1)
is verified for the 𝜐𝜎 corresponding to a given transition in 𝑅𝐷𝐺𝑆𝑖𝑟

. A
set of integer variables 𝜐𝜎𝑑𝑖 (𝑖 ∈ {1, 2}) has also been associated to the
set of events of 𝑅𝐷𝐺𝑆𝑖𝑟

. A value of 1 is assigned to each of the 𝜐𝜎𝑑𝑖
corresponding to the events to be disabled next by the supervisor (E2).
In Listing 1, the states of 𝑅𝐷𝐺𝑆𝑖𝑟

are expressed as switch cases in a switch
statement, while the transitions are represented by the if statements
that allow to modify the switch case value. All these statements are
encompassed in a function called supervision. While the value of 𝜐𝜎𝑑𝑖 is
modified in supervision, these variables are also input of another function
and so are coded as pointers. This is not the case for 𝜐𝜎 as they are
generated at the Logic Control level and cannot be modified by the
supervision function. The state variable in Listing 1, however, is local
to the function and so no pointer is needed.

In order for the decentralized architecture to meet the CP-
coobservability requirement, the disabling signals disjunction function is
created, as shown in Listing 2. Here, the variables 𝜐𝜎𝑑𝑖 representing
the disabling signals to be transmitted between the two decentralized
controllers are merged by means of the disjunction of the disabling
signals of each individual controller (E3). The result of this disjunction is
assigned to an integer variable 𝜐𝜎𝑑 that is later transmitted to the Logic
Control level and so it is a pointer.

The supervisor and disabling signals disjunction functions constitute
what has been called the Supervision level of the local control system
(see Fig. 11).

4.2.3. Logic control level
The Logic Control level contains a realization of the plant automaton.

It is in charge of forcing controllable events into the real plant through
Boolean-valued commands signals, while taking into account the control
map of the Supervision level and the physical plant evolution through
the disabling signals and the responses signals, respectively. In view of
the complexity of power systems operation, the supervisory control
should not be isolated from the TSO so that the latter is able to choose,
by means of controllable events, which of the control strategies is
best to be triggered at a given state. Obviously, the TSO’s requests
should be expressed before the system is put into operation in order
to meet the fast response requirement due to the DC voltage dynamics.
Therefore, the implemented controller should allow for the generation
of some controllable events and the associated commands following
external demands, as opposed to previous works, where it is assumed
that the commands are autonomously generated by the controller in
a predetermined manner (Balemi, 1992; Charbonnier et al., 1995;
de Queiroz, 2002; Vieira et al., 2017).

Hence, the notion of 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑖𝑛𝑔 is introduced. The set of events
triggered internally by the controller, denoted by 𝛴𝑖𝑡, is distinguished
from the set of externally triggered events, denoted by 𝛴𝑒𝑡. Furthermore,
the notion of triggering allows the implemented controller to be deter-
ministic at all times since it is up to the TSO to choose which command
should be generated at a given state when two or more controllable
events are enabled. As uncontrollable events 𝛴𝑢 are generated by the
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physical system itself, they are externally triggered by definition (𝛴𝑢 ⊆
𝛴𝑒𝑡). On the other hand, a subset of the controllable events 𝛴𝑐 is
internally triggered (𝛴𝑖𝑡 ⊆ 𝛴𝑐) and it is to be specified by the developer
during implementation. Thus, for a set of events 𝛴 = 𝛴𝑢 ∪ 𝛴𝑐 , the
following relation is satisfied:

(𝛴𝑢 ⊆ 𝛴𝑒𝑡) ∧ (𝛴𝑖𝑡 ⊆ 𝛴𝑐 ) ∧ (𝛴𝑖𝑡 ∪ 𝛴𝑒𝑡 = 𝛴).

Thus, the input condition associated with a transition in the Moore
machine 𝐺𝑀

𝑖 (𝑖 ∈ {1,… , 𝑛}) is defined by the controllability and trigger-
ing conditions of the event labeling them (Task 2 of Fig. 12). Whenever
an event 𝜎 ∈ 𝛴 associated with such a transition is controllable (𝜎 ∈ 𝛴𝑐)
and triggered locally by the controller (𝜎 ∈ 𝛴𝑖𝑡), the only condition for
the transition to occur is that the disabling signal 𝜎𝑑 of the event 𝜎 that
belongs to the set of disabling signals 𝐷𝑀 (𝜎𝑑 ∈ 𝐷𝑀 ) is not activated,
giving as a result the input expression (E4):
(E4) NOT 𝜎𝑑

Whenever the event 𝜎 is controllable (𝜎 ∈ 𝛴𝑐) and triggered by a
request external to the controller (𝜎 ∈ 𝛴𝑒𝑡), the transition is crossed if the
response signal 𝑟𝑠𝑝𝜎 in the set of the response signals 𝑅𝑀 (𝑟𝑠𝑝𝜎 ∈ 𝑅𝑀 ),
which indicates the occurrence of an external request, is activated, and
that the corresponding disabling signal 𝜎𝑑 is deactivated. The Boolean
expression (E5) is then defined:
(E5) 𝑟𝑠𝑝𝜎 = 1 AND NOT 𝜎𝑑

Finally, whenever the event 𝜎 that labels the transition is uncontrol-
lable (𝜎 ∈ 𝛴𝑢), and thus externally triggered by definition, the transition
is crossed when the response signal 𝑟𝑠𝑝𝜎 ∈ 𝑅𝑀 indicates the occurrence
of an uncontrollable event, after the continuous-time CS inputs fulfill
certain predefined conditions. Expression (E6) is used in this case:
(E6) 𝑟𝑠𝑝𝜎 = 1

On the other hand, the output actions associated to each state of
𝐺𝑀
𝑖 are defined by the controllability of the unique event reaching the

state, with the exception of the initial state 𝑥0, which is not associated
to any event. In all cases, the Logic Control generates an event signal 𝜎
included in the set 𝛴𝑀 (𝜎 ∈ 𝛴𝑀 ) so that the implemented supervisors
𝑆𝑀
𝑖 are updated to the current system state. Furthermore, if the event

reaching a given state is controllable, the command signal 𝑐𝑚𝑑𝜎 in the
set 𝐶𝑀 (𝑐𝑚𝑑𝜎 ∈ 𝐶𝑀 ) is sent to the Interface level so that the CS outputs
signals are modified according to the desired control action, as defined
in expression (E7):
(E7) 𝜎 = 1 AND 𝑐𝑚𝑑𝜎 = 1

On the contrary, no command signal is generated in the case of
uncontrollable events, as can be seen in expression (E8):
(E8) 𝜎 = 1

Similarly to the expressions defined in the previous section, expres-
sions (E4) to (E8) have been defined as generic expressions that can be
implemented as C code.

Case study : the converted plant 𝐺′′
𝑖 of Fig. 13 is transformed into

a corresponding Moore machine 𝐺𝑀
𝑖 by means of the defined Boolean

input and output expressions ((E4)-(E8)). The 𝐺𝑀
𝑖 Moore machine is

then implemented as a C code function within the control program,
named logic control, as shown in Listing 3.

In Listing 3, the Boolean expression of the type (E5) for the event
CloseDCCBi labeling the transition from the state (0,∅) to the state (1,
CloseDCCBi) is expressed by means of two types of integer variables:
one for the response signal (𝜐𝑟𝑠𝑝𝜎) and the other for the disabling signal
(𝜐𝜎𝑑). Similarly, according to expression (E7), two types of integer
variables are associated to the output signals generated at the state (1,
CloseDCCBi): one for the command signal (𝜐𝑐𝑚𝑑𝜎), as the event reaching
the state is controllable; the other for the event signal (𝜐𝜎). Finally, it
should be noted that it suffices to rank first the input conditions of an
uncontrollable event to indicate its priority over a controllable event,
as the code is executed line by line during a scan cycle. In graphical
languages (LD, SFC), on the other hand, because an additional variable is
created in order to prevent the processing of controllable events during a
scan cycle (Vieira et al., 2017), two cycles for the same task are required.

1 void l o g i c _ c o n t r o l ( . . . ) {
2 s t a t i c i n t s t a t e = 0;
3

4 switch ( s t a t e ) {
5 case 0:
6 i f ( rspCloseDCCBi && ! CloseDCCBid ) {
7 s t a t e = 1;
8 }
9 break ;

10

11 case 1:
12 ∗CloseDCCBi = 1;
13 ∗cmdCloseDCCBi = 1;
14 i f ( r spS t a r tUc i ) {
15 s t a t e = 6;
16 }
17 i f ( rspCloseACCBi && ! CloseACCBid ) {
18 s t a t e = 2;
19 }
20 break ;
21 . . .
22 }
23 }

Listing 3: Logic control function

As in the supervision function, the states of 𝐺𝑀
𝑖 are expressed by

means of a switch statement, while the transitions are represented by
means of if statements. Also, given that the value of variables 𝜐𝜎 and
𝜐𝑐𝑚𝑑𝜎 is modified in the logic control function and shared between several
C code functions, they are declared as pointers. The logic control function
constitutes what has been called the Logic Control level of the local
control system (see Fig. 11).

4.2.4. Interface level
In addition to the two levels defined in Charbonnier et al. (1995),

a third level that interfaces the supervisory control system with the
continuous-time physical system is added in Fig. 11. The Interface level
is connected to the physical system through its sensors and actuators.
Following the activation in the Logic Control module of the command
signals associated to a certain sequence of activities, the Interface
module will modify the control system outputs (CS outputs) sent to
the actuators accordingly. On the other hand, when the value of the
continuous-time signals (voltage, current, etc.) measured by the sensors
and sent to the control system inputs (CS inputs) reaches a predefined
threshold, a response signal indicating the occurrence of a particular
event in the physical system is activated and sent to the Logic Control
level. In addition, the Interface identifies if an external operator makes
the choice of a specific control action (external demands) and generates
the corresponding response. All these input and output expressions are
system-specific and have to be written by the developer (Task 4 of
Fig. 12).

Case study : the C function responsible for the interaction with the
continuous-time system, named interface, is shown in Listing 4. A set of
variables 𝜐𝑖𝑛 of type double is associated to the continuous-time input
signals of the local control system, such as the current and voltage
measurements in Listing 4. As the actuators of the system are typically
commanded through Boolean-valued signals, a set of integer variables
𝜐𝑜𝑢𝑡 is associated to them.

In Listing 4, when a rise in the measured current is detected, a value
of 1 is assigned to the respective response variable 𝜐𝑟𝑠𝑝𝜎 . Likewise, if
the converter voltage (m_Vmmc) and the local voltage measurement
of the DC cable (m_Vdc) have reached their rated value of 320 kV,
a value of 1 is assigned to the variable associated to the end of the
charging. Finally, when the Interface detects an external demand by
the operator to close the circuit breakers, which is an input variable
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1 void i n t e r f a c e ( . . . ) {
2

3 ∗ r spS ta r tUc i = fabs ( m_Idc ) > 0;
4

5 ∗rspEndCci = ( fabs (m_Vdc) >= 320e3 && fabs (m_Vmmc)
>= 320e3 ) ;

6

7 ∗rspCloseDCCBi = reqDCCB ;
8

9 ∗rspCloseACCBi = reqACCB ;
10

11 ∗outDCCB = cmdCloseDCCBi ;
12

13 ∗outACCB = cmdCloseACCBi ;
14

15 . . .
16

17 }

Listing 4: Interface function

1 void main ( v_ in , v_out ) {
2

3 // Declare in t ege r va r i ab l e s
4 s t a t i c i n t v_sigma = 0;
5 s t a t i c i n t v _ s igma_d i = 0;
6 s t a t i c i n t v_sigma_d = 0;
7 s t a t i c i n t v_cmd_sigma = 0;
8 s t a t i c i n t v _ r sp _ s igma = 0;
9

10 // Reset l o c a l d i s ab l i ng s i g n a l s
11 v_s igma_d i = 0;
12

13 // Ca l l superv i s ion funct ion
14 superv i s ion ( v_sigma , v _ s igma_d i ) ;
15

16 //Merge d i s ab l i ng s i g n a l s
17 d i s a b l i n g _ s i g n a l s ( v_s igma_di , v_s igma_d ) ;
18

19 // Reset l o c a l event s i g n a l s
20 v_sigma = 0;
21

22 // Ca l l l og i c con t ro l funct ion
23 l o g i c _ c o n t r o l ( v_sigma_d , v_rsp_s igma , v_sigma ,

v_cmd_sigma ) ;
24

25 // Reset response s i g n a l s
26 v_r sp _ s igma = 0;
27

28 // Ca l l i n t e r f a c e funct ion
29 i n t e r f a c e ( v_ in , v_cmd_sigma , v_out , v _ r sp _ s igma ) ;
30

31 // Reset command s i g n a l s
32 v_cmd_sigma = 0;
33

34 }

Listing 5: Main function

𝜐𝑖𝑛, a value of 1 is assigned to the associated response variable. This
external triggering is awaited by the Logic Control so the command
variable value can be modified. Then, the Interface function modifies in
consequence the output integer variables sent to the physical breakers
(outDCCB, outACCB).

4.2.5. Coordination of the control levels

Fig. 14. Simulation results.

The different C code functions written for each level of the supervi-
sory control are now coordinated via the main function shown in the
pseudo-code of Listing 5. The 𝜐𝑟𝑠𝑝𝜎 , 𝜐𝑐𝑚𝑑𝜎 , 𝜐𝜎 , 𝜐𝜎𝑑𝑖 and 𝜐𝜎𝑑 variables
used in the previous functions are declared. The term static is used
so that they are not initialized to zero at each execution cycle. It is
important to keep in mind, however, that they must be reset at each
execution cycle so that the avalanche effect described in Fabian and
Hellgren (1998) does not appear. Then, the functions defined above are
called and the corresponding variables are given as parameters. In turn,
the main function takes as parameters the input and output variables
(𝜐𝑖𝑛, 𝜐𝑜𝑢𝑡) associated to the control system I/O signals exchanged with
the HVDC grid. In this way, the main C function calls all the functions
within the control system at each execution cycle in the order described
in Listing 5. All the C functions can then be implemented in the EMTP-
RV software for the simulation of electric power systems. Because the
software runs in Windows, the program of each decentralized controller
can be implemented in EMTP-RV via a Dynamic-Link Library (DLL).
Although DLLs cannot be instantiated, multiple copies of the same
DLL can be used, which facilitates the integration of the program. The
internal variables of the DLLs remain local to each copy if the program is
coded with pointers, as it is the case in this paper. Otherwise, the use of
global variables would oblige to name differently the variables in each
copy.

4.3. Simulation results

The electrical circuit of Fig. 3 is designed in EMTP-RV using the
software’s specialized library of components. Given the degree of detail
of this model and the impossibility to test the obtained controllers in
a real system, the simulation is considered as a valid method for their
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validation. The control program of each decentralized controller is then
implemented via DLLs as explained in Section 4.2.5. The simulation
results of the start-up of a point-to-point link are presented in Fig. 14.
As it can be observed, the voltage behavior of the MMCs copies that
of Fig. 6 as all prohibited actions have been effectively disabled by the
decentralized control. Similarly, the voltage of the DC cables remains
within the specifications and reaches its rated level in the end of the
procedure. Hence, the start-up is effectively realized.

5. Conclusions and perspectives

In this paper, a method for the implementation of the supervisory
control for HVDC systems is presented. The proposed method allows
the controller to be separated into different levels of detail (i.e. Su-
pervision, Logic Control and Interface), which increases the flexibility
during the design phase. Moreover, the proposed method allows the
implementation of a decentralized architecture, thus adapting to the
characteristics of HVDC grids. The method is implemented in C code, as
the simulation of the start-up of an HVDC link in the EMTP-RV software
was targeted. Future implementation in a real-time simulation software
such as HYPERSIM could also be considered with the proposed method.
Also, because the I/O expressions of the implemented supervisors have
been proposed in a generic form, the proposed method could be ex-
tended to Structured Text (ST) language (International Electrotechnical
Commission, 2003), given the similarity of its syntax with C code (Basile
& Chiacchio, 2007).

The proposed method has been applied to the start-up of a point-to-
point link. The use of SCT has imposed the identification of the physical
components behavior on the one hand and the requirements on the other
hand. It is in the perspectives to develop the supervisory control in a
mode-switching structure (Faraut et al., 2009) so that different control
procedures, such as start-up, shutdown and post-fault restoration can
be treated. Furthermore, the low-level interface that interacts between
the discrete-controllers and the continuous-time system could be further
refined. For instance, its interaction with complex observers could
facilitate the integration of Model Predictive Control (Moradzadeh,
Bhojwani, & Boel, 2011) to the supervision system.
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