
Incremental Discrete Controller Synthesis
for communicating systems based on

modular decomposition

Mingming REN ∗ Emil DUMITRESCU ∗ Laurent PIETRAC ∗

Eric NIEL ∗

∗ Laboratoire AMPERE, INSA-Lyon, Villeurbanne, F-69621 France
(e-mail: first.last@insa-lyon.fr)

Abstract: The symbolic Discrete Controller Synthesis (DCS) is applied incrementally on
successive abstractions of the system to be controlled, which is composed of two or more
concurrent communicating components. We keep one component while abstract away all others.
DCS is applied on the resulting abstract system and produces an intermediate approximate
control solution. We refine the abstract model incrementally by adding concrete model of the
abstracted components one by one. At each refinement, the previous intermediate solution is
used as a starting point synthesizing a more precise solution until the precise supervisor is
reached. The efficiency of the incremental technique is illustrated with performance assessments
on several models.

Keywords: Discrete controller synthesis, BDDs, incremental synthesis, symbolic DCS.

1. INTRODUCTION

The Discrete Controller Synthesis (DCS) technique [Ra-
madge and Wonham (1989)] is a promising approach for
generating correct by construction behaviors of a discrete
event system. DCS has been traditionally used in the
automatic control area: the supervisor is meant to operate
with elements of a manufacturing system, such as sensors
and actuators. More recently, interesting DCS applica-
tions have been made in the area of electronic design
automation [Bloem et al. (2007)]. Technical characteristics
for these new communicating applications handle addi-
tional considerations such as Input/Output statements.
The Ramadge-Wonham framework has a language-based
foundation which fits perfectly well to the event-driven
systems, where events from an alphabet occur in a strictly
sequential order. On the contrary, in electronic systems,
time-driven or sample-driven is more suitable, since se-
quential events are replaced by concurrent input/output
variables. These variables as well as state variables evolve
simultaneously at a same pace/clock. Thus it is more
natural to use a synchronous modeling framework on such
systems. As a result, we use the Binary Decision Diagram
(BDD)-based symbolic DCS technique presented in [Marc-
hand (1997)].

Regardless of the application domain, efforts made to
apply DCS to larger and larger real-life designs came
across the same difficulty: the size of the system leads to
time and/or memory blow-up during the computation of
the supervisor. The method extensively used to overcome
this problem is decomposition. In particular, modular
decomposition is a natural and intuitive approach used
in discrete event system design, and exploited in several
research contributions on DCS.

The incremental DCS technique we present exploits sys-
tem modularity: given a system composed of two or more
communicating modules, a supervisor is constructed in-
crementally, by (1) keeping one module while abstracting
away all others, (2) computing an approximate interme-
diate solution at a lower cost, and (3) refine the abstract
system model by adding one abstracted module, using the
previous intermediate solution as a starting point for the
computation of a more approaching solution, (4) repeating
the refinement until the original system and the exact
control solution are reached.

The outline of this paper is the following. Section 2
presents the running example used to illustrate our tech-
nique. The definitions and notations required follow in sec-
tion 3. Section 4 formalizes and illustrates the incremental
DCS technique. Section 5 discusses the particularities of
our technique compared to other research contributions.

2. EXAMPLE : A 3-WAY ARBITER WITH TOKEN

As an example, we present the model of an arbiter man-
aging exclusive access to a shared resource for three in-
dependent clients. The model only focuses on the access
management feature.

The access management is modeled by three synchronous
concurrent state machines,Mi, (i = {1, 2, 3}) , which share
identical function and structure. Each cell Mi receives a
request reqi from its client and issues a corresponding
access grant acki to that client. The access control is
enforced by a token mechanism. A cell may acknowledge
its client only if it holds the token. Each cell passes the
token to its successor via its output touti. Since touti and
acki share the same value, we will only use acki in the
following.

315

Preprints of WODES 2012
October 3-5, 2012
Guadalajara, México

Cells Mi are modeled by two automata: M1
i receives the

token. M2
i implements the access grant to the shared

resource according to the availability of the token. It also
forwards the token, once it has been effectively used. The
automata of a single cell are shown in Figure 1. M1

i
and M2

i communicate via the signal goi, which is set to
1 whenever a token has been received and 0 otherwise.
The state Ni means “no token received”. State Ti means
“a token has been received”. State Ii is an idle state,
waiting for a client request. State Gi is an active state,
where a client has just been granted access and the
token is forwarded. In the sequel, for reading commodity,
compound states are referred to by concatenating state
names of distinct components. For instance, Mi is said to
be in the compound state NiIi iff M1

i is in state Ni and
M2

i is in state Ii. Thus, NiIi is an abbreviation of the
cartesian product {Ni} × {Ii}.

Ni T iM1
i

Ii GiM2
i

tini

tini

reqi · goi

True

[goi = 0] [goi = 1]

�
acki = 0
touti = 0

� �
acki = 1
touti = 1

�

Fig. 1. Model of a single cell Mi

The 3-way arbiter is constructed by instantiating the three
cells Mi, i = 1, 2, 3 and by connecting their interface and
output variables, as shown in Figure 2. Communication is
assumed by the pairs of (touti, tini+1), i = 1, 2. Tokens are
fed to M by the environment through input tin1.

M2
1

M1
1

M2
2

M1
2

M2
3

M1
3

req1 ack1 req2 ack2 req3 ack3

tin1 tout1

tin2

tout2

tin3

tout3

go1 go2 go3M1 M2 M3

Fig. 2. Communication assumed by inter-connection

The access grant policy we wish to achieve is mutual
exclusion : machinesMi should never emit their acki signal
at the same moment. This requirement can be expressed
by the following proposition:

spec : ack1 ∧ ack2 ∨ ack2 ∧ ack3 ∨ ack1 ∧ ack3
The proposition spec must be made invariant over the
arbiter model. This is formally specified in Computation
Tree Logic (CTL) as enforce : AG(spec).

3. DEFINITIONS

This section recalls the definition of communicating mod-
ules and of their synchronous composition. The principles
of the classical DCS technique are also recalled. Each
definition is illustrated with the arbiter example.

3.1 Controllable finite state machines (CFSM)

Let B = {0, 1} be the set of Boolean values. Given a set
E, we note 2E , the set of all subsets of E. We define a
controllable modular Boolean FSM M as a tuple:

M = (Q, I, L, δ, q0, PROP,λ)

such that:

• Q : a finite set of n states {q0, q1, . . . , qn−1};
• I : a set of Boolean input variables, such that I = U∪
C and U ∩ C = ∅ :

· U = {u0, · · · , um−1},m > 0 : the set of uncon-
trollable input variables;

· C = {c0, · · · , cp−1}, p > 0 : the set of controllable
input variables;

• L = {l0, · · · , lr−1}, r > 0 : a set of interface inputs;
• δ : Q× Bm+p+r → Q is the transition function of M ;
• PROP = {p0, · · · , pk−1}, k > 0 is a set of k Boolean
propositions;

• λ : Q → B|PROP | is a labeling function associating
a set of atomic properties to each state q ∈ Q. The
labeling function models the outputs of M ;

• q0 is the initial state of M .

Note that λ is not bijective. We define λ−1 : PROP → 2Q,
the association of a Boolean proposition with the subset
of states in Q where it holds. The function λ−1 has the
following properties:

• λ−1(p1 ∧ p2) = λ−1(p1) ∩ λ−1(p2);
• λ−1(p1 ∨ p2) = λ−1(p1) ∪ λ−1(p2);
• λ−1(p) = Q \ λ−1(p).

In the following, we note u, c, l, the vectors containing the
variables of U,C,L.

Example: Modules Mi are building blocks for designing
a correct 3-way arbiter. They are assembled according to
Figure 2. On the resulting model, the token mechanism
is only partially defined. A token can be inserted from
the environment, via input tin1 which is set to 1. Once
inserted, the token is passed from a cell to the following
as soon as it is used. However, in order to satisfy spec,
there should never be more than one token present inside
the arbiter. Hence, the value of tin1 cannot be chosen at
random. It should not be set to 1 until no token is present
inside M .

As tin1 seems crucial for ensuring token unicity inside
M we chose it as controllable. The incoming requests
reqi, i = 1, 2, 3 can arrive at any moment, and so they
are considered uncontrollable.

So the resulting supervisor should control M via its
token tin1 input, according to the uncontrollable in-
puts {req1, req2, req3} and the resulting controlled arbiter
should satisfy the CTL [Clarke and Emerson (1981)] prop-
erty:

enforce : AG(spec).

According to the synchronous composition definition for
communicating CFSMs, modules Mi have both environ-
ment inputs and local inputs. Environment inputs are
dedicated to communication with components situated
outsideM . Local inputs are used for modeling communica-
tion between the modules Mi of M . Here we have L1 = ∅,
L2 = {tin2}, L3 = {tin3}.

316

The sets of Boolean propositions associated to Mi, i =
1, 2, 3 are PROPi = {acki, acki}. The labeling functions
λi associate these atomic propositions to the states of Mi:
λi(NiIi) = {acki}, . . . ,λi(TiGi) = {acki}.
Conversely, the set of states of Mi satisfying proposition
acki is given by : λ−1

i (acki) = {NiGi, TiGi}.
A supervisor needs to be built by DCS in order to
implement the access grant policy spec by adequately
driving the controllable variables.

3.2 Synchronous composition

We compose CFSMs according to the synchronous paradigm
defined in [Milner (1983)]. Let us note M = ||Ki=1Mi the
synchronous composition betweenK communicating mod-
ules Mi = (Qi, Ii, Li, δi, q0i, PROPi,λi), i = 1, · · · ,K. In
the following, we assume that an output cannot be driven
by more than one CFSM inside a synchronous product:

∀i, j = 1, · · · ,K, i �= j : PROPi ∩ PROPj = ∅.
We also assume that the sets of controllable and uncon-
trollable variables are coherent with respect to the syn-
chronous composition: if an input is shared between Mi

andMj , it cannot be controllable inMi and uncontrollable
in Mj .

According to the actual hierarchical structure of M , the
set of interface inputs of module Mi can be partitioned
into K − 1 disjoint subsets {Lj

i |j = 1, . . . ,K, j �= i} with

Lk
i ∩ Lj

i = ∅, (∀k, j = 1, · · · ,K, j �= k)

and �

j=1,··· ,K,j �=i

Lj
i = Li

and
0 ≤ |Lj

i | ≤ |Li|.
The set of interface inputs Lj

i belongs to Mi and is
connected to outputs of Mj .

Let PROP
outj
i ⊆ PROPi be the subset of output propo-

sitions of Mi which are connected to module Mj through
Li
j . Similarly, the output functions λi ofMi are partitioned

according to their connectivity. Let (λj,k
i), 0 ≤ k ≤ |Li

j | be
the outputs of Mi connected to Mj .

The synchronous composition of CFSMs M = ||Ki=1Mi is
defined as follows:

• Q = Q1 × · · · ×QK ;
• I = I1 ∪ · · · ∪ IK , such that Ii = Ui ∪ Ci;
• L = ∅;
• δ : Q×Bm1+p1+r1 ×· · ·×BmK+pK+rK → Q is defined
as:

δ =
�
δ1
�
q1, i1, λ1,1

2 (q2), · · · ,λ1,|L2
1|

2 (q2),

λ1,1
3 (q3), · · · ,λ1,|L3

1|
3 (q3),

· · ·
�
,

· · · ,
δK

�
qK , iK, λK,1

1 (q1), · · · ,λK,|L1
K |

1 (q1),

λK,1
2 (q2), · · · ,λK,|L2

K |
2 (q2),

· · ·
�

�
;

• q0 = (q01, · · · , q0K);
• PROP = PROP1 ∪ · · · ∪ PROPK ;

• λ : Q → B
�K

i=1
|PROPi| is defined as:

λ
�
(q1, · · · , qK)

�
=

�
λ1(q1), · · · ,λK(qK)

�
.

The inverse function λ−1(p) : PROP → 2Q is defined as:

λ−1(p) =
�

i=1,··· ,K
Q1 × · · · × λ−1

i (p)×Qi+1 × · · · ×QK .

Example: Consider the arbiter model; we illustrate
the association of Boolean propositions to global states
through the synchronous composition. The synchronous
composition labels each global state (q1, q2, q3) with all
the atomic propositions associated to q1, q2 or q3.

To illustrate the reverse labeling function λ−1, let us apply
it to the Boolean proposition spec we wish to enforce gives
the following result:

λ−1(ack1 ∧ ack2 ∨ ack2 ∧ ack3 ∨ ack1 ∧ ack3) =

λ−1(ack1 ∧ ack2 ∧ ack2 ∧ ack3 ∧ ack1 ∧ ack3) =

λ−1(ack1 ∧ ack2) ∩ λ−1(ack2 ∧ ack3) ∩ λ−1(ack1 ∧ ack3).

By successively applying the properties cited in section 3.1
and the definition of λ we obtain:

λ−1(ack1 ∧ ack2) =

Q \ λ−1(ack1 ∧ ack2) =

Q \ (Q1
1 × {G1} ×Q2 ×Q3 ∩Q1 ×Q1

2 × {G2} ×Q3),

where Q represents the entire global state set.

A similar application of the same calculus leads to the
global result :

λ−1(ack1 ∧ ack2 ∨ ack2 ∧ ack3 ∨ ack1 ∧ ack3) =

Q \ (Q1
1 × {G1} ×Q2 ×Q3 ∩Q1 ×Q1

2 × {G2} ×Q3

∪Q1 ×Q1
2 × {G2} ×Q3 ∩Q1 ×Q2 ×Q1

3 × {G3}
∪Q1

1 × {G1} ×Q2 ×Q3 ∩Q1 ×Q2 ×Q1
3 × {G3}).

In the following we recall the basics of the Discrete
Controller Synthesis technique on top of which we develop
the incremental DCS technique.

3.3 Discrete controller synthesis : the global approach

The DCS technique we use is presented in details in [Marc-
hand (1997)]. The synthesis algorithm starts with an initial
set of states I0 of the system M and attempts to make
it invariant. The set I0 is called a control objective, and
corresponds to the set of states satisfying a given Boolean
proposition, the specification.

First, DCS computes the set of states I∗ ⊆ I0 inside
which it is always possible to remain by choosing the
right values for the controllable inputs, despite any value
taken by the uncontrollable inputs. The set I∗ is called an
invariant under control (IUC) for M and the specification
I0. The set I∗ is built by successive computations of the
controllable predecessors states of I0 , until a fixed point
is reached. The controllable predecessors CPred of a given
set of states I is defined as the set of states from which
I can be reached in one transition, whatever the values of

317

the uncontrollable inputs, by picking adequate values for
the controllable inputs:

CPred(I,M) = {q|∀u, ∃c : δ(q, u, c) ∈ I}.

The invariant under control function I∗(M, I0) computes
the greatest fix-point of the following equation:

Ik+1 = CPred(Ik,M) ∩ Ik, I0 = λ−1(spec).

If the resulting IUC is not void and if it contains the initial
state q0, a supervisor can be built. the resulting supervisor
is defined as the set of all transitions of M leading to I∗ :
S = {(q, u, c)|δ(q, u, c) ∈ I∗}.

3.4 Example : Applying global DCS to the arbiter model

According to the specification stated in section 2, the
global state λ−1(spec) should be prohibited by control.
The DCS algorithm starts with the set of states satisfying
spec : I0 = λ−1(spec), and it further prunes states
T1I1T2I2 ×Q3 ∪Q1 × T2I2T3I3 ∪ T1I1 ×Q2 × T3I3.

The invariant under control set I∗ with respect to spec
contains all the states of M1||M2||M3 such that for any
uncontrollable tuple (req1, req2, req3) ∈ B3 there always
exist (tin1) ∈ B such that the transition obtained reaches
I∗. The corresponding supervisor is partially represented
below :

(T1G1T2I2N3I3), (req1 ∨ tin)∨
(T1I1T2G2N3I3), (req1 ∨ tin)∨ . . .

It represents all M1||M2||M3 transitions leading to I∗. For
instance, in state (T1I1T2G2N3I3), if req1 are not active,
the supervisor enforces tin = 0, otherwise, the supervisor
does not constrain tin.

4. THE INCREMENTAL DCS TECHNIQUE

As in classical DCS, the incremental (IDCS) algorithm
enforces the assertion AG(spec), where spec is a Boolean
proposition expressed over the set PROP1∪ · · ·∪PROPK

of M1|| · · · ||MK by using the classical Boolean connec-
tors ∧,∨, p. The incremental algorithm is based on an
abstraction and an incremental procedure of refinement.
Different abstraction techniques have already been applied
in a DCS context. They are briefly reminded in section 5.
The abstraction criterion we propose aims at hiding from
M1 all behaviors of M2, · · · ,MK except those elements of
M2, · · · ,MK having an influence either on the behavior of
M1 or on the satisfaction of spec.

The IDCS acts as follows: First, it builds an abstract
model M1||Mabs

2 || · · · ||Mabs
K . The abstraction replaces

M2, · · · ,MK by a most permissive abstract FSM model,
which models all the possible behaviors for those outputs
initially driven by M2, · · · ,MK , and having an influence
either on the behavior of M1 or on the satisfaction of
spec. Such an abstract FSM model for a given variable
x is a two-state non-deterministic automaton, having all
transitions enabled and asserting x = 0 or x = 1, according
to its current state. Modules Mabs

2 , · · · ,Mabs
K are said to

be an loose, i.e. nonrestrictive environment for M1, in the
sense that it allows more behaviors of their outputs than
M2, · · · ,MK actually do.

The number of abstract FSMs obtained depends on the
number of output variables shared with M1 and spec.

For m shared variables, the loose environment Mabs
i , i =

2, · · · ,K models all possible values of these variables,
and thus has 2m states. Thus, the gain achieved through
abstraction strongly depends on the connectivity between
Mi with M1 and spec, and the concrete model of Mi itself.
The abstraction operation is formalized in the next section.

Second, an intermediate, approximate control solution
IUCabs

1 is synthesized for spec on the abstract system
model M1||Mabs

2 · · · ||Mabs
K . This is achieved by applying

DCS and has a lower computation cost, because it op-
erates on a smaller model, depending on the size of the
abstraction previously achieved.

Finally, the abstraction is partially refined: Mabs
2 is re-

placed by M2. The intermediate result IUCabs
1 is used as

the starting point for synthesizing a new control solution
for spec and M1||M2||Mabs

3 · · · ||Mabs
K . Modules M3 · · ·MK

are added progressively, and successive intermediate re-
sults are computed.

The last step operates on the whole system model. It is
expected to benefit from the computations achieved at the
previous steps on the abstract model. The IDCS technique
is illustrated on the right side of Figure 3 for K = 3,
by comparison to the direct application of DCS which is
shown on the left side, and has been presented in section 3.

M1 M2 M3 M1 Mabs
2 Mabs

3

M1 Mabs
2 Mabs

3

M1 M2 Mabs
3

M1 M2 Mabs
3

M1 M2 M2 M1 M2 M3

U1 C1 U2 C2 U3 C3 U1 C1

U1 C1

U1 C1 U2 C2

U1 C1 U2 C2

U1 C1 U2 C2 U3 C3 U1 C1 U2 C2 U3 C3

abstraction

D
irect

sy
n
th
esis

A
p
p
r.

sy
n
th
.

A
p
p
r.

sy
n
th
.

R
efi
n
em

en
t

R
efi
n
em

en
t

Synthesis

IUCabs
1

IUCabs
1

IUCabs
2

IUCabs
2IUC123

Supervisor

Fig. 3. Incremental synthesis on M1||M2||M3

318

4.1 Abstraction

Let p ∈ PROP a Boolean proposition of machine M . We
define the abstraction of M with respect to p, as the set
of configurations satisfying or not p. It is modeled as a
non-deterministic FSM :

abs(p) = (Qabs, Iabs,Labs, δabs, Qabs, PROP abs,λabs)

where

• Qabs = {qp, q̃p}, Iabs = ∅ and Labs = ∅;
• δabs : Qabs → 2Q

abs

is defined as: δabs(qp) =
δabs(q̃p) = Qabs;

• the initial state can be any among Qabs;
• PROP abs = {p, p};
• λabs : Qabs → PROP abs is defined as:
λabs(qp) = p and λabs(q̃p) = p.

Thus, the abstraction of M with respect to p is a non-
deterministic FSM where p can be either true or false, and
where all transitions are possible. The abstraction of M
with respect to a subset PROPk ⊂ PROP is defined as
the synchronous composition of the individual abstractions
defined on pi ∈ PROPk:

Abs(PROPk) =�j=1,··· ,k abs(pi).

4.2 Abstract set refinement

The abstract set refinement operation projects an abstract
set of states back on the original states of the global
system. The projection is performed through the set of
Boolean proposition mappings λ−1abs and λ Let Qabs be a
subset of states of an abstract model M1||Mabs

2 and Q the
set of states of M1||M2. The refinement of Qabs builds the
subset of Q labelled with the same Boolean propositions
as the states of Qabs. We define ref : Qabs → 2Q as:

ref(qabs) = {q ∈ Q|q ∈
�

λ−1(p), p ∈ λabs(qabs)}.

The refinement of an abstract set of states is defined as :

Ref(Qabs) =
�

{ref(qabs)|qabs ∈ Qabs}.
4.3 The Incremental DCS algorithm

The IDCS algorithm starts with the description of M and
the specification spec to be enforced. It also requires an
ordering between the modules of M = M1||M2|| · · · ||MK ,
which is to be applied during the successive refinement
steps. At each iteration j, an abstraction IUC(M, j, spec)
is computed with respect to:

• the outputs of Mj+1 · · ·MK which are connected to
local inputs of M1 · · ·Mj ;

• the set of atomic propositions of Mj+1 · · ·MK used
to express spec.

The performance and advantages of the IDCS technique
are commented in detail in section 4.5. In the following,
we establish that the IDCS algorithm also produces a
maximally permissive supervisor.

Theorem 1

Algorithms DCS and IDCS produce the same result.

Proof The above statement is true iff the incremental and
direct synthesis algorithms produce the same invariant
under control sets.

Algorithm 1 IDCS algorithm

1: {inputs:
• M = M1||M2|| · · · ||MK , (K ≥ 2), the system to

be controlled;
• spec the specification to enforce;

output: IUCinc, the invariant under control set for M
and spec }

2: Mabs ← ABS(M, 2, spec)
3: I ← λ−1abs(spec)
4: I ← IUC(Mabs, I)
5: j ← 3
6: while I �= ∅ and j ≤ K do
7: Mabs ← ABS(M, j, spec)
8: I ← Ref(I, {spec}, Qabs)
9: I ← IUC(Mabs, I)

10: j ← j + 1
11: end while
12: if I �= ∅ then
13: {The last invariant under control is projected back

on the states Q of M :}
14: I ← Ref(I, {spec}, Q)
15: IUCinc ← IUC(M, I)
16: end if

Let us recall that for any DCS problem, we have IUC ⊆
λ−1(spec).

Let IUC be the result produced by direct DCS and IUCinc

be the result produced by the IDCS algorithm. It can
be observed that IUCinc ⊆ IUC. Indeed, the last step
of IDCS operates on the whole system M ; it attempts
to make invariant the set I, refined at iteration j = K
with respect to spec. By construction, all these states are
included in QM and satisfy spec. Thus, I ⊆ λ−1(spec).
The last DCS application computes IUCinc ⊆ I by making
invariant the set I.
So, on the one hand, direct DCS makes invariant the set
λ−1(spec) on M and produces the set IUC ⊆ λ−1(spec).
On the other hand, the last step of IDCS starts with
a subset of λ−1(spec): it makes invariant the set I ⊆
λ−1(spec) on M and produces IUCinc.

Now, let us consider the state q ∈ IUCinc; q is contained
in λ−1(spec). Assume that q is not an element of IUC.
This means that direct DCS has pruned the state q on
M . The last step of IDCS performs an ordinary direct
DCS operation on M , making invariant the set of states
I, containing q. Thus, state q should also be pruned by
IDCS and should not be included in IUCinc. So it is true
that ∀q ∈ QM : q ∈ IUCinc =⇒ q ∈ IUC. We can
conclude that IUCinc ⊆ IUC.
Let us now assume that the above inclusion is strict.
This means that there exists at least one state q ∈ QM

such that q ∈ IUC and q �∈ IUCinc. State q has been
pruned by the incremental DCS algorithm: there exists
a transition leaving q and leading out of IUCinc for a
given uncontrollable value and for any value taken by the
controllable variables. However, if such a transition exists,
state q would also be pruned by DCS from IUC. Hence,
we conclude that IUCinc = IUC. ✷

319

4.4 Example : applying IDCS to the arbiter model

In the following, {∗i} abbreviates the set of all states of a
given model Mi. We apply IDCS on the example model:
M1 and M2 are abstracted by Mabs

1 and Mabs
2 respectively.

Then they are incrementally refined: M2 followed by M1.

Abstraction. Let us abstract M1 and M2. The abstrac-
tion rule applied to M1,M2 concerns its output variables
shared withM3 and spec. We have PROP out

1 = SPEC1 =
{ack1, ack1}, PROP out

2 = SPEC2 = {ack2, ack2}. Fig-
ure 4 represents the abstract model obtained. For read-
ability reasons, abstract states are directly labeled with
their corresponding Boolean proposition.

IUCabs1 = I0 pruned states:

{ack1} × {ack2} ×Q3 ∪ {∗1} × {ack2} × {∗13} × {G3}
∪{ack1} × {∗2} × {∗13} × {G3}

ack1

ack1

Mabs
1

[ack1 = 0;]

[ack1 = 1;]

ack2

ack2

Mabs
2

[ack2 = 0;]

[ack2 = 1;]

I3

G3

M2
3

[ack3 = 0;]

[ack3 = 1;]

T3

N3

M1
3

[go3 = 1;]

[go3 = 0;]

req
3 ·

g
o
3

ti
n
3

tin
3

Fig. 4. Abstract model Mabs
1 ||Mabs

2 ||M3 and the approxi-

mate computation of IUCabs1

Note that model Mabs
1 and Mabs

2 are entirely non-
deterministic: at any moment, all transitions are enabled.

Approximate IUC computation. The approximate in-
variant under control for property spec is built upon the
abstract model Mabs

1 ||Mabs
2 ||M3. As shown in figure 4,

IUCabs1 prunes the following abstract states : {ack1} ×
{ack2} × {∗3} ∪ {∗1} × {ack2} × {∗13} × {G3} ∪ {ack1} ×
{∗2} × {∗13} × {G3}.

Refinement We then refine the abstract model by re-
placing Mabs

2 with M2, as illustrated in figure 5.

The pruned state set is refined with respect to M2 and
spec. Thus the IUCabs1 prunes states of {ack1} × {∗12} ×
{G2}×{∗3}∪{ack1}×{∗2}×{∗13}×{G3}∪{∗abs1 }×{∗12}×
{G2} × {∗13} × {G3}.
From the refined IUCabs1, the DCS algorithm then fur-
ther finds another set of states to be pruned: {∗abs1 } ×
{T2I2T3I3}.

Final synthesis. To achieve the last step, we replace
Mabs

1 by M1 and refine the states pruned from IUCabs2

on the states of M1||M2||M3.

The computation of the final supervisor tries to make
invariant the set Ref(IUCabs2). This last step finds no
more states to be pruned. Thus we have an exact final
solution IUC, as shown in figure 6.

IUCabs2 pruned states:

I0 ∪ {∗abs1 } × {T2I2T3I3}

I0 = Ref(IUCabs1, {spec}, Qabs2) pruned states:

{ack1} × {∗12} × {G2} ×Q3 ∪ {ack1} ×Q2 × {∗13} × {G3}
∪{∗abs1 } × {∗12} × {G2} × {∗13} × {G3}

ack1

ack1

Mabs
1

[ack1 = 0;]

[ack1 = 1;]

I2

G2

M2
2

[ack2 = 0;]

[ack2 = 1;]

I3

G3

M2
3

[ack3 = 0;]

[ack3 = 1;]

T3

N3

M1
3

[go3 = 1;]

[go3 = 0;]

T2

N2

M1
2

[go2 = 1;]

[go2 = 0;]

req
2 · g

o
2

req
3 · g

o
3

ti
n
3

tin
3 ti

n
2

tin
2

Fig. 5. Abstract model Mabs
1 ||M2||M3 and the approxi-

mate computation of IUCabs2

I0 = Ref(IUSabs2{spec}, Q) pruned states:

{∗11} × {G1} × {∗12} × {G2} ×Q3 ∪Q1 × {∗12} × {G2} × {∗13} × {G3}
∪{∗11} × {G1} ×Q2 × {∗13} × {G3} ∪Q1 × {T2I2T3I3}

∪{T1I1} ×Q2 × {T3I3} ∪ {T1I1T2I2} ×Q3

T1

N1

M1
1

[go1 = 1;]

[go1 = 0;]

I1

G1

M2
1

[ack1 = 0;]

[ack1 = 1;]

I2

G2

M2
2

[ack2 = 0;]

[ack2 = 1;]

I3

G3

M2
3

[ack3 = 0;]

[ack3 = 1;]

T3

N3

M1
3

[go3 = 1;]

[go3 = 0;]

T2

N2

M1
2

[go2 = 1;]

[go2 = 0;]

ti
n
1

tin
1

req
1 · g

o
1

req
2 · g

o
2

req
3 · g

o
3

ti
n
3

tin
3 ti

n
2

tin
2

Fig. 6. Final DCS step ensuring spec on M1||M2||M3

4.5 Implementation and performance issues

The performance of the IDCS algorithm strongly depends
on the actual implementation of the underlying DCS tech-
nique. The technical possibilities available are enumerative
DCS and symbolic BDD-based DCS.

Enumerative DCS techniques represent explicitly the set
of states of the system. The complexity of the DCS is
O(n|Σ|) where n is the total number of states of the system
composed to its specification, and |Σ| represents the size
of the input alphabet.

Symbolic BDD-based DCS manipulates sets of states,
rather than individual states, and uses binary decision
diagrams (BDDs) [Bryant (1986)] to represent them. The
performance of this technique is promising, but remains
bound by the spatial complexity for constructing a BDD,
which is exponential in the number of Boolean variables
representing the system. Hence, memory is a critical com-
puting resource for symbolic DCS.

Regardless of the underlying DCS technique used, the
computation of an abstract IUC (step 2 of IDCS algo-
rithm) is definitely faster, as it operates on a reduced

320

model. The speedup mainly depends on the structural
decomposition achieved and thus on the final size of the
abstract model obtained. However, the second application
of the global DCS starting with an intermediate solution
shall still feature the same complexity as classical DCS,
plus the overhead generated by the computation of the
abstract solution.

The ability of symbolic DCS to efficiently manipulate state
sets instead of individual states is an important advantage.
We choose to build the IDCS algorithm on top of the
symbolic DCS technique developed in [Marchand (1997)].

We expect an average performance improvement of sym-
bolic IDCS over symbolic DCS for the following reasons.
First, the computation of the approximate IUC oper-
ates on the reduced model. As abstraction removes most
states from M , the impact on the size of the BDDs built
for the symbolic traversal of the abstract state space is
indubitable. Second, the computation of I produces an
intermediate, approximate solution of the DCS problem.
It relies on a more compact BDD representation, as it is
built over an abstract system containing less variables.
Moreover, the set I is a subset of λ−1(spec). Thus, a
number of states of the abstract model are pruned at
a lower computation cost and need not be reconsidered
anymore during subsequent DCS applications. Thus, we
expect the final DCS step to converge faster (with less
fix-point iterations) towards the final solution. Besides,
if a DCS problem does not have a solution, this can be
detected on the abstract system at a much lower cost.

It should be noted that, our IDCS technique requires
a supplementary user-specified indication: an ordering
between the modules which constitute the global system.
IDCS works iteratively: for a system containing K ≥ 2
modules, it requires K steps, one for each module, with
K! possible application orders. It is easy to observe that
deciding which module order is optimal with respect to the
global performance of IDCS faces exponential complexity
problems, and thus is not feasible. We argue that an
ordering between modules can be user specified, and
determined according to the structure and the connectivity
of the global system.

The performance figures of symbolic IDCS over symbolic
DCS are presented in section 4.6.

4.6 Experimental results

We realized both global and incremental synthesis in
a symbolic supervisor synthesis tool SIGALI [Marchand
et al. (2000)]. The experimental figures are validated by a
systematic formal proof that the two supervisors obtained
by DCS and IDCS are the same. The quantitative figures
obtained show that IDCS improves both computation time
and memory usage. Results are shown in table 1, where
memory usage is measured in megabytes, and numbers of
BDD nodes are shown in millions except for example MA.
All experiments are performed on a computer with Intel
Core 2 T7100 and 2Gb memory.

Among these examples, PB stands for Pi-BUS, a bus
controller that manages shared resources for several de-
vices; BA is a distributed arbiter with 4 cells synchronized
by a token ring; MA is the example illustrated in this
paper; TA models the fault-tolerant scheduling of 2 tasks

Table 1. Experiment results

PB BA MA TA CM PH1 PH2

glob.

mem 3.8 4.2 1.3 6.1 18 114 114

bdd 0.05 0.05 7728 0.08 0.3 2.4 2.4

time 5.3m 7s - 100s 27s 12m 12m

incr.

mem 2.0 1.9 1.1 3.3 11 95 21

bdd 0.02 0.01 5785 0.04 0.2 1.9 0.4

time 0.16s 2s - 37s 3s 11m 42s

gain

mem 47% 54% 15% 46% 39% 17% 82%

bdd 60% 80% 25% 50% 33% 21% 83%

time 71% - 63% 89% 8.3% 94%

executing on 3 processors; CM models a “cat and mouse”
problem with 2 mice and 1 cat in 5 rooms; examples PH1
and PH2 model the 3 philosophers dining problem. They
only differ in the fact that PH2 performs a supplementary
abstraction/refinement step, as it contains three modules.

The figures obtained show that the IDCS technique
achieves very interesting performance improvements over
classical DCS. Besides, the figures obtained for the exam-
ple PH2 strongly suggest that generalization of IDCS to n
modules can bring important improvements.

5. RELATED WORKS
Modular supervisory control is first studied in [Wonham
and Ramadge (1988)]. Since, a number of methods have
been proposed to reduce computation and/or memory ef-
forts. In [Su and Wonham (2004)], redundant information
such as transition constraints which are already enforced
by the system are reduced from the supervisors. This tech-
nique can be applied to modular supervisors synthesis to
improve efficiency, but it needs to build modular supervi-
sors first. In [Schmidt et al. (2006)] authors apply abstrac-
tion techniques for decentralized control. Supervisors are
computed for each reduced subsystem system alphabet,
and the abstract behavior is reduced to this alphabet. Lan-
guage projections are used in [Feng and Wonham (2006),
Feng (2007)] to simplify and to construct modular super-
visors. An abstraction based on automata rather than on
language projections was proposed in [Su et al. (2008)] in
order to preserve nonblocking properties. In [Flordal and
Malik (2006), Flordal et al. (2007)], the authors present a
framework for compositional synthesis, using abstractions
based on a process equivalence called supervision equiva-
lence. Using non-deterministic automata, the method sup-
ports a wide range of simplifications and can hide both
controllable and uncontrollable events, while still ensuring
a least restrictive result. In [Malik and Flordal (2008)] an
equivalence of non-deterministic abstract processes, called
synthesis equivalence, is proposed. In [Hill et al. (2008)]
modular supervisors are built; potential conflicts between
modular supervisors are solved by a set of coordinating
filters. A modular technique based on concurrent automata
decomposition is presented in [Gaudin and Marchand
(2004), Gaudin (2004)]. The global supervisor is obtained
by treating each automaton of a modular composition
separately. The automata are supposed to share input
events, but they do not communicate, i.e. no outputs of
one automaton are connected to the inputs of another
automaton. In [Hill (2006)] an incremental synthesis ap-
proach with abstraction is proposed. The abstraction is

321

applied to the modular sub-controlled components by pro-
jecting away strictly private events. Supervisory synthesis
is achieved in an incremental down-up manner until all
specifications are satisfied.

The techniques enumerated above mostly exploit quali-
tative properties of the system, the specification or the
supervisor: modular composition, locality of input events,
locality of the specifications, behavioral equivalence, mod-
ularity of the supervisor, etc. The IDCS algorithm does
not perform any qualitative analysis on the system. It
abstracts away the environment of a module M , commu-
nicating with other modules inside the same system. The
approximate solution is built upon the exact definition
of M , and an optimistic assumption of its internal en-
vironment. This assumption is refined when the abstract
environment of M is replaced by the original one, and the
final DCS step is performed. The key advantage of IDCS
is its ability to exploit modularity with communication
between the different modules. Besides, IDCS can benefit
from most techniques enumerated above, in order to make
a finer usage of the qualitative properties of the system.

6. CONCLUSION

An Incremental Discrete Controller Synthesis (IDCS) algo-
rithm was presented. It alternates automatic abstraction,
based on the modular structure of the system, and classical
DCS application steps, to build an exact supervisor. The
IDCS technique improves the performance of the clas-
sical BDD-based DCS, for systems featuring concurrent
communicating modules. The time/memory efficiency of
IDCS is illustrated with quantitative figures which show
interesting enhancements for both memory usage and ex-
ecution time. However, the order in which IDCS should
consider each module of a system must be user-specified.
This choice is important for the performance of IDCS.
Finding a good order for abstraction and refinement is left
as a future research direction for this work. In fact, in the
arbiter example, there exists a dependency chain among
the components. M2 influences M3 directly, M1 influences
M2 directly and M3 indirectly. This dependency structure
could be an indication for finding a good order.

REFERENCES

Bloem, R., Galler, S., Jobstmann, B., Piterman, N.,
Pnueli, A., and Weiglhofer, M. (2007). Automatic hard-
ware synthesis from specifications: A case study. In
Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), 1188–1193.

Bryant, R. (1986). Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Comput-
ers.

Clarke, E. and Emerson, E. (1981). Design and synthesis
of synchronization skeletons using branching time tem-
poral logic. In Logic of Programs, volume 131 of LNCS.
Springer-Verlag.

Feng, L. (2007). Computationally Efficient Supervisor
Design For Discrete-Event Systems. Ph.D. thesis, Uni-
versity of Toronto.

Feng, L. and Wonham, M. (2006). Computationally
efficient supervisor design: Abstraction and modularity.
In Proceedings of the 8th International Workshop on
Discrete Event Systems, WODES\\,’06, 8, 3.

Flordal, H. and Malik, R. (2006). Supervision equivalence
[supervisor synthesis]. In Discrete Event Systems, 2006
8th International Workshop on, 155 –160.

Flordal, H., Malik, R., Fabian, M., and Akesson, K. (2007).
Compositional synthesis of maximally permissive super-
visors using supervision equivalence. Discrete Event
Dynamic Systems, 17(4), 475–504.

Gaudin, B. and Marchand, H. (2004). Modular supervisory
control of a class of concurrent discrete event systems.
In Workshop on Discrete Event Systems, WODES’04,
181–186.

Gaudin, B. (2004). Synthèse de contrôleurs sur des
systèmes à événements discrets structurés. Ph.D. thesis,
Université de Rennes I.

Hill, R.C. Tilbury, D. (2006). Modular supervisory control
of discrete-event systems with abstraction and incre-
mental hierarchical construction. In Discrete Event
Systems, 2006 8th International Workshop on, 399–406.
Ann Arbor, MI.

Hill, R., Tilbury, D., and Lafortune, S. (2008). Modu-
lar supervisory control with equivalence-based conflict
resolution. In American Control Conference, 2008, 491
–498.

Malik, R. and Flordal, H. (2008). Yet another approach
to compositional synthesis of discrete event systems. In
Discrete Event Systems, 2008 9th International Work-
shop on, 16–21. Goteborg, Sweden.

Marchand, H., Bournai, P., Borgne, M.L., and Guernic,
P.L. (2000). Synthesis of discrete-event controllers based
on the signal environment. Discrete Event Dynamic
System: Theory and Applications, 10(4), 325–346.

Marchand, H. (1997). Méthode de Synthèse
d’automatismes décrits par des systèmes à événements
discrets finis. Ph.D. thesis, Université* de Rennes I.

Milner, R. (1983). Calculi for synchrony and asynchrony.
Theoretical Computer Science, 25(3), 267–310.

Ramadge, P. and Wonham, W. (1989). The control of
discrete event systems. Proceedings of the IEEE, 77(1),
81–98. doi:10.1109/5.21072.

Schmidt, K., Marchand, H., and Gaudin, B. (2006).
Modular and Decentralized Supervisory Control
of Concurrent Discrete Event Systems Using
Reduced System Models. In Workshop on
Discrete Event Systems, WODES’06, 149–154. IEEE
Computer society, Ann-Arbor United States. doi:
10.1109/WODES.2006.1678423.

Su, R. and Wonham, W.M. (2004). Supervisor reduction
for discrete-event systems. Discrete Event Dynamic
Systems, 14(1), 31–53.

Su, R., van Schuppen, J.H., and Rooda, J.E. (2008). Su-
pervisor synthesis based on abstractions of nondeter-
ministic automata. In Discrete Event Systems, 2008 9th
International Workshop on, 412–418. Goteborg, Swe-
den.

Wonham, W. and Ramadge, P. (1988). Modular supervi-
sory control of discrete-event systems. Mathematics of
Control, Signals, and Systems (MCSS), 1(1), 13–30.

322

