
A New Approach of Modeling Supervisory Control

for Manufacturing Systems Based on SysML

Xiaoshan Lu, Laurent Piétrac, Eric Niel

Laboratory Ampère (UMR 5005)

INSA Lyon, F-69100 Villeurbanne, France

{xiaoshan.lu, laurent.pietrac, eric.niel}@insa-lyon.fr

Abstract—The supervisory control theory is widely used to

deal with problems of controller design in the field of discrete

event systems. Despite the academic attention over last several

decades, there were few application cases in real industrial

systems. Some scientific results have shown the difficulties of

implementation of Supervisory Control Theory (SCT) and

proposed some possible solutions. On the other hand, the

difficulty of using the theory for system engineers should also be

taken into consideration. This paper presents a modeling

approach of SCT based on SysML. Aimed at typical

manufacturing systems, a three-level model template is proposed

to bridge the gap between SCT and system design. For each

template in the modeling library, there is one equivalent model in

three levels: the SCT model level, the interface model level and

SCT model level. The construction of modeling template is based

on the prototype abstraction of typical manufacturing system

elements. The transformation algorithms between each model

level are given in the paper. The engineer can design the system

by the standardized templates and modeling procedures in

system engineering level. The correspondent SCT model will be

created according to the transformation algorithm and computed

the solution automatically. An example will be posed to validate

the modeling methodology application at the end of the paper.

Keywords—discrete event system; supervisor control theory;

SysML, modeling; manufacturing system

I. INTRODUCTION

In the field of Discrete Event System (DES), SCT was first
introduced by Ramadge and Wonham in 1982 [1]. By the
scientific achievements within the past several decades, the
framework of SCT forms a systematic formal paradigm to
synthesize controllers for plants. Many solutions have been
proposed to deal with SCT problems such as supervisor
synthesis [2], [3], controllability [4], observability [5], and
supremal sublanguage [6], [7]. On the other hand, the number
of states and transitions grow sharply with the scale increasing
of system [8]. In order to deal with de state-space explosion
problem, different control structures were proposed by research
works. Wonham and Ramage introduced the concept of
modular control [9] and Queiroz and Cury extends the
approach to local modular control [10]. Some new control
strategies have been put forward during the past several years
such as the coordinated distributed supervision and aggregated
distributed supervision proposed by Su [11], [12], by which an
coordinator is designated to ensure nonblocking among local
supervisors.

However, despite the academic achievements of SCT over
last several decades, there were few application cases in real
industrial manufacturing systems. There exist several obstacles
between the theory and application. Some researchers endeavor
to deal with the difficulty of Programmable Logic Controller
(PLC) implementation of SCT. Scientific result has shown that
the main problems in supervisory control implementation are
causality, avalanche effect, simultaneity, choice, etc. [13].
There are some possible solutions to deal with the problems:
Queiroz and Cury proposed a control structural control
implementation of modular control [14] and examples are
posed to illustrate the approach [15]. In [16] DECON9
methodology was proposed to provide a standardized approach
and solution to many problems that arise while implementing
SCT into PLC.

Another problem for application of SCT is the modeling of
real system. The SCT provides us a theoretical basis for
behavior analysis of components in the form of formal
language or automaton. The SCT has its limitation in modeling
large-scale structured discrete event systems. The automaton
just represents the behavior aspect of the system and the
relationship between the components, the interfaces or
interaction can hardly be recognized. To model a discrete event
system by SCT, system designers should focus on abstract the
system into the key elements in SCT such as state, event,
alphabet, transition or automata composition etc. The abilities
of system engineers to utilize SCT for modeling system can be
more or less limited.

The model-based system modeling language gives us the
opportunity to deal with the second problem above, by which
designers can pay more attention to the system attributes
themselves. Some researchers contributed the object-oriented
model. Purao and Vaishnavi [17] proposed an ordered set with
three elements (E, A, M) to represent an object-oriented model.
Chidamber and Kemerer define a formal object-oriented model
describing the system [18]. Huang extend the modeling method
based on SysML and proposed to use SysML to model a
system to be simulated and to support the automatic generation
of simulation models [19]. All the methodologies provide the
possibility to propose a new standardized model template.

The template itself is not enough to deal with the modeling
problem. Some questions could be posed: If the automata
model is correctly abstracted from the real system or if there is
any standardized model template can be used to avoid

978-1-5090-6505-9/17/$31.00 ©2017 IEEE

modeling mistakes. In this paper, a new rapid modeling
approach in SysML, a Model Based System Engineering
(MBSE) modeling language, will be proposed for template
design of controller. The new modeling approach is aimed to
model a DES and realize an automatic supervisor synthesis by
standard model templates. A three-level model is put forward
to achieve the transformation SysML model to SCT model
based on standardized templates. With the proposed modeling
method, system designers can focus on the system attributes
and do not need to abstract the system in traditional SCT ways.
This paper will introduce the modeling method by three
sections: the proposed model, the model prototype and the
modeling procedure. An example will be posed to validate the
modeling methodology at the end.

II. PRELIMINARIES

A. Supervisory Control Theory

In SCT framework, we regard the uncontrolled systems as
plant and synthesize a supervisor to ensure the control actions
of the plant according to the specifications. The supervisor
makes sure the controlled system behaves within minimal
limitations.

The behavior of a plant can be denoted as an automaton G

such that
0(, , , ,)mG X Σ x X , where X is the finite set of

states; Σ is the alphabet; : X Σ X   is the state transition

function;
0x X is the initial state and

mX X is the set of

marked states. The generated language of G
*

0() { : (,) is define}L G s E f x s    represents the free behavior

of the plant and *

m 0 m() { : (,) X }L G s E f x s   the marked

language represents the marked behavior of the plant.

The specification can also be modeled by an automaton H

such that
0(, , , ,)mH Y Σ' ' y Y where Y,

0y Y and
mY Y

denote set of states, the initial state and the set of marked states
respectively. A supervisor S is a function from the language
generated by G to the power set of Σ . Assuming that Σ' Σ ,
the controlled behavior under supervisor S can be represented
by the product of G and H, if G E is controllable with regard

to G and
cΣ :

 0 0 0 0(, , ,(,),)G E Ac X Y x y X Y      

Where,


(,) if (, , ') (, , ') '

undefined otherwise

x' y' x x y y   


      
 


 

The Ac operator means the accessible part of an automaton.
If all events are controllable, this operation produces the
controlled system behavior respecting to the specification.
However, if G E can be verified uncontrollable, an algorithm

should be performed to compute the maximal behavior [20].

B. SysML

SysML is one of the graphical modeling languages for
systems engineering applications, first proposed by Object

Management Group (OMG) together with the International
Council on Systems Engineering (INCOSE) in 2001 and
adopted as a standard in May 2006 (http://www.omgsysml.org).
SysML is an extension of the subset of Unified Modeling
Language (UML) with nine kinds of diagrams such as block
definition diagram (BDD) and activity diagram, by which
SysML can represent systems and each components, as well as
their behavior and structure.

SySML has been widely put into application for modeling
in system engineering. For example, an MBSE Challenge
project was established to model a hypothetical FireSat satellite
system to evaluate the suitability of SysML for describing
space systems [21]. Another example is the requirement
modeling of smart surface by SysML [22]. The great advantage
of visualization and facility of modeling by SysML gives us the
great opportunity to modeling the typical manufacturing
system.

III. THE THREE-LEVEL MODELING APPROACH

The traditional modeling process of supervisory control can
be divided into three steps: abstraction, modeling and synthesis.
At first step, the behaviors of component and requirements are
abstracted into plant and specification respectively. Then, all
the elements in five-tuple formalism should be determined and
transform the formalism model to automata. By SCT, the
supervisor is synthesized in different ways according to the
control strategies. Finally, the controllability, observability and
nonblocking of the supervisor should be verified and purge the
forbidden states and transitions.

The new proposed modeling method is quite different from
the traditional ways. The automata abstraction may not be
necessary when there are objected-oriented and automatically-
transformed model templates. The inputs of the modeling
method are key parameters of the system attributes and task
requirements and the outputs are the target supervisor design.
The nature of the modeling method is the rapid transformation
and computation from real system design to SCT solutions.

To achieve rapid modeling SCT in SysML by system
engineers, the modeling methodology should meet the
following requirements:

 The designer can model the system in the way he is
familiar with rather than the formalism which is
difficult to understand. Besides, The design can just
focus on the component organization, the system
requirements and key attributes. The templates library
offers enough model prototypes for the designer and
models can be customized.

 The SysML model can be transformed to SCT model
automatically. According to the system structure and
requirements input, the back end SCT model is created.
The computation of supervisor synthesis under given
specification is performed at the same time.

The three-level model template consists of SysML model,
interface formal model and SCT model. The traditional SCT
model becomes the bottom model, which are not modeled
directly by the system designer. SCT model is encapsulated by
two other models: the SysML model templates are front end

directly used by the designer. Between the two levels, the
interface model should be constructed to transform the SysML
template into SCT model. The schematic of three-level model
is shown in Fig. 1. When modeling a system, the user models
the system by SysML template and organizes them in diagrams
such as Block Definition Diagram (BDD). Then this front-end
model will be transformed to the SCT model and computer
automatically. The core computation algorithms are based on
SCT.

a) SysML model level

In SysML level, the SysML model is the correspondent
model template representing the system element based on
SysML. The model template is an abstract of the element in the
system. The SysML model is used to record the inputs of
system attributes: the structure, the relation between the
components, the parameters and the requirements, etc. In the
three-level model, it can be considered as the input module. All
the necessary information should be defined in SysML model.
The SysML model should be in the form of template in order to
meet the requirement of rapid modeling.

The SysML templates are constructed based on the
prototypes of manufacturing system in Section IV. The key
attributes of a real component are extracted and a SCT model
of it can be transformed by these attributes. That means the
attributes can be mapped to all the five elements of 5-tuple
formalism.

All SysML models should be presented in several SysML
diagrams for describing the system structures and requirements.
SysML provides us nine kinds of diagrams. Not all the
diagrams must be used for modeling, but the diagrams should
be interpreted by the three-level model semantically.

b) Interface model level

The interface formal model is the core of the three-level
model. The function of it is to define the transformation
specifications from SysML model to SCT model. The interface
model can be formalized by a three-tuple:

 (, ,)s RWMI A A T  

 Where, MI is denoted as formal model of each

corresponding SysML model;
sA is the abstract data type

(ADT) which saves all the input information of the element

from SysML model;
0(, , , ,)RW mA X Σ x X is five tuple of

the corresponding SCT formalism; T is denoted as the set of

transformation algorithms from sA to RWA .

ADT
sA consists of two parts: data and operation. The data

part stores the input information by data structure. The task of

operations is pre-treatment of data sA before transformation.

For example, if the input data have default value, there should
be operations to fill in the appropriate data. T is the function

set mapping sA to RWA . T should make sure that all the data

in can be correctly transformed to RWA .

c) SCT model level

Fig. 1. Schematic of the Three-level model.

SCT model is the output computation core of three-level
model. It is encapsulated in the other two models. The SCT
model can be obtained directly from because it is the formal
model of SCT. In this level, the form of model is an automaton.
Based on the R-W theory, the final result of supervisor
synthesis can be computed when all the plants and
specifications have been built.

The three-level model template is abstracted based on the
real manufacturing system components. The SCT abstraction
prototype of components is of great importance for the three-
level model especially for SysML model and automatic
transformation algorithm in interface model. The construction
of the three-level model is based on the infrastructure-level
SCT prototype and encapsulates it as user-oriented model.

IV. PROTOTYPE OF TYPICAL MANUFACTURING SYSTEM

COMPOMENT

The conception of template design for DES was proposed
in [23] by using entities and channels. In [24] and [25], the
authors parameterize DES template by which the template can
be instantiated to different models in application. These papers
focused on the algorithms of transforming the parameterized
models and supervisor synthesis. The proposition here,
however, is based on the modeling prototype of templates of
manufacturing system and automatic transformation in three-
level model.

The work started from the existing case study of
manufacturing system. According to the case studies of [15],
[16], [26], [27], the basic components which can compose a
manufacturing system under supervisory control at the lower
limit are machines, buffers, transportation system and
supervisors. Besides, the processing procedures can be
considered as specifications and safety requirements.
According to SCT, the basic model prototypes must contain the
three kinds of prototype: plant, specification and supervisor. In
this section, we intend to show the main logic and method of
abstracting the typical manufacturing system components.

A. Plant

The plant abstracting the real components in manufacturing
system can be a machine, a robot, etc. The event sets between
plants usually have no intersection. Here, we use the prototype
modeling of machine and robot as examples.

a) Machine

All the workstation can process a series types of part can be
abstracted into machine, for example, a drilling machine, an

assembling station, etc. The SCT prototype can be defined as
shown in Fig. 2(a). Different processing can be represented by
state Si in the automaton. The events of starting processing ai

and finishing processing fi trigger the transitions for each state.

According to the paradigm of [14], the starting events are
defined as controllable events and the finished events are
defined as uncontrollable.

Besides, a machine can also be extended to a machine with
failure treatment, shown in Fig. 2(b). The prototype can
simulate the behaviors of a machine to which happens an
unexpected failure and wait for maintenance. Compared with
the aforementioned machine, an additional state and its
transitions represent the state of failure and the repair.

b) Transportation system (robot)

The Transportation system, usually in form of robot, is to
take a part from a buffer and put it to another. Fig. 3 shows the
SCT prototype of a robot. The number of buffer decides the
state number of automaton. The event sets _ , 1,2...A i i n 

represent move-to-position actions and event , 1,2...bi i n  for

each state represent the arrive-at-position actions.

B. Specification

The specifications represent the behavior constraints of the
components in manufacturing system. The events of
specification event set usually belong to one or several plants.
Here, the prototype modeling of buffer and processing
procedure are used as examples.

a) Buffer

Buffer can temporarily store several parts between
workstations. Buffer is usually regarded as specification in
SCT. The prototype of stock buffer, as example, is defined as
follows:

 (a) Machine (b) Machine with failure treatment
Fig. 2. SCT prototype of machine .

Fig. 3. SCT prototype of robot.

Fig. 4. Example of SCT prototype of buffer.

 The maximum capacity of a buffer is the key parameter
to determine the number of state. The state of empty is
the initial state and marked state.

 The machines connected to the buffer determine the
events and transitions. The end events of machines that
enter the buffer consist of the inlet event set _A j ; the

start events of machines that exit from buffer consist of

the outlet event set _A k .

b) Processing procedure

The processing procedures are specifications to impose the
correct processing sequence of parts to be processed. It
establishes requirements as follows:

 Coordinate the behaviors of buffer:

The processing procedures of different parts should
determine the fork behavior specifications of the
relative outlet buffers and the join behavior
specifications of the relative inlet buffers.

 Restrain the behavior of the robot:

The robot can move freely between the target
components. The processing procedures determine the
working trajectory of the robot. Two logics should be
taken into consideration: (1) The robot should move
between buffers according to the processing procedure;
(2) The robot should move from one outlet buffer of
machine to inlet buffer to another machine.

C. Supervisor

The key point of supervisor we concern about is the result
of different control strategies. The computation algorithm in
the framework of SCT is chosen according to the designated
controller design and the supervisor is computed based on the
plants and specification. Therefore, the parameter which must
be contained in the supervisor model is the control strategy.

A supervisor prototype should have two tasks: the control
strategy choice and the computation based on the chosen
control strategy when the plants and specifications are given. In
our library, there are different control strategies: the centralized
control, decentralized control and local modular control, etc.

V. MODEL TEMPLATE DEVELOPING PROCEDURE

The target participants of the modeling methodology can be
divided into two main parts: template designer and model user.
Model template designers focus on create and extend the
models in the Three-level template library; the modeling user’s
work is to analyze the system structure and requirements and
establish the system model by existed or customized templates.
The transformation and computation will be automatically
performed after the models are created.

Here, the main development approach of the three-model
method template and its principle of modeling, transformation
and computation are explained in detail. The SysML modeling
tool to use is IBM Rational Rhapsody.

a) Step 1

In section IV, we have mentioned the template prototypes
in threes types and here templates is defined in SysML for each
corresponding prototype. According to the three kinds of
prototypes, all the typical manufacturing system element
models can be generalized from three stereotypes, shown in Fig.
5. It should be pointed out that the stereotype is just a logical
classification and key word of the element to be transformed to
SCT model and have no additional attributes. Based on the
stereotype categories, all the elements can be classified by
generalization from one of them. For example, a machine that
process different part types can be abstracted as a block named
with stereotype “machine”, generalized by stereotype “plant”.

Now that the prototype automata can be abstracted from the
real system, all the prototypes can also be parameterized from
logic consideration. The key parameters to be abstracted which
are able to offer the enough information for automatic
instantiation. The parameterized models are then remodeled in
the form of SysML with variables.

Fig. 5. Stereotype structure.

Fig. 6. Definition of machine and buffer in SysML.

Fig. 7. Definition of transport system and supervisor

(a) Block definition (b) Activity diagram

Fig. 8. Definition of processing procedure in SysML.

The attributes of a machine are to input the information of
data part: the part name, start events and end events, which are
enough for automatic transformation, shown in Fig. 5. The
attributes of machine can have default value. A buffer can also
be defined as a block with attributes: capacity, Inlet machine
and Outlet machine. Fig. 6 shows the logic of the determinacy
of the buffer when the three attributes are determined. The
block of transport system and supervisor can also be defined,
shown in Fig. 7.

It should be pointed out that not only the structure elements
but the behavior specifications can be defined by SysML
model. Fig. 8 shows an example of SysML model of
processing procedure. A block with stereotype “processing
procedure” represents the model of processing procedure.
Several activity diagrams are allocated to define the processing
procedures of different type parts. The parameter “trajectory”
defines the exact processing sequence of parts.

b) Step 2

The second step is to create the interface formal model for
each block with parameters. In the formal model MI, the ADT

sA save and pre-process the input data and key words from

SysML, which are important to transform the SysML model to
SCT model. The ADTs of a machine and a buffer are shown in
TABLE I.

In Data part of
sA of machine, the stereotype of model is

stored so as to clarify the SCT model type when transforming.
Part_Par are the key information for transformation. In
operation part, the function Default value definition () is to fill
in the default values automatically and Type number count ()
is to pre-process the additional parameter for transformation.

The function setT in model MI is the method set which is

to transform sA to SCT formalism RWA . The nature of the

transformation is mapping the parameters given by sA to

parameter in RWA denoted by : s RWAT A .

T of machine can be defined as follows:
Automaton Type = plant;

{0,1,2,..., }X n , n is the number of part type;

{Set of InEvent} {Set of OutEvent}Σ   ;

{(0, ,) Part_Par[n].InEvent,n=1,2,...,n}

{(, ,0) Part_Par[n].OutEvent,n=1,2,...,n};

p n p

n q q

   

  

0 {0}x  , {0}mX  .

Autoamton
<<Stereotype>>

Machine
<<Stereotype>>

Plant
<<Stereotype>>

Specification
<<Stereotype>>

Supervisor
<<Stereotype>>

Buffer
<<Stereotype>>

Transport
<<Stereotype>>

Processing procedure
<<Stereotype>>

Machine with failure
<<Stereotype>>

Basic machine
<<Stereotype>>

Part_Par
<<ValueType>>

Attributes

InEvent:RhpString

OutEvent:RhpString

Type:RhpString

Workstation1

<<Block,Machine>>

Values

PartProcess[1..*]:Part_Par

Buffer

<<Block,Buffer>>

Values

Capacity:int

InMachine:RhpString

OutMachine:RhpString

TransportSystem

<<Block,Transport>>

Values

MoveComponent[1.....

Supervisor

<<Block,Superv isor>>

Values

Control_Strategy:Rh...

PS

<<B lock,Process ing procedure>>

Val ues

trajectory[1..*]:Rhp...

Process_i of Default

<<Activity>>

<<allocate>>

TABLE I. THE ADT
sA OF MACHINE AND BUFFER

Machine Buffer

Data:

Name of model;

Stereotype;

Data of Part_Par.

Operations:

Default value definition ();

Type number count ();

Data:
Name of model;

Stereotype;

Capacity;

InMachine;

OutMachine.

Operations:

The Automaton Type assignment should be retrospect to its
father stereotype. The developing of a buffer is similar to the

machine. The ADT
sA of a buffer is shown in TABLE I.

There is no operation in buffer because data part is enough for
the transformation. The T of a buffer can be defined as
follows:

Automaton Type = specification;

{0,1,2,..., }X n , n is the capacity;

{Set of InMachine.OutEvent}

{Set of OutMachine.InEvent};

Σ 



{(, , 1) InMachine.OutEvent,n 0,1,...,n 1}

{(1, ,) OutMachine.InEvent,n 0,1,...,n 1};

n p n p

n q n q

      

     

0 {0}x  , {0}mX  .

The mapping should make sure that
sA can be interpreted

into
RWA correctly whatever the instance is, or the model should

be rebuilt. The model must have the characteristic of
universality.

In the same way, the T of a robot can be defined as
follows:

Automaton Type = plant;

{0,1,2,3,..., }X n , n is the number of buffer it move to;

{Set of MoveToEvent}

{Set of EndMovevent};

Σ 



{(0, ,) MoveToEvent, n 1,2,...,n,

 i 1,2,...,i -1,i 1,..,n}

 {(, ,0) EndMoveEvent, n 1,2,...,n};

pin n pin

n qn qn

    

 

   

0 {0}x  , {0}mX  .

The developing of processing procedure is a little more
complex that machine and buffer. The activity diagrams are the
specific requirements of processing procedure and block “PS”
is to gather all the necessary information in activity diagrams
and process them to specifications. Based on the block PS, two
kinds of specification should be transformed: coordinating
specification of buffer behavior and transportation system
behavior constraint.

(1) Coordinating specification of buffer behavior

The modeling of basic buffer behavior is based on the
prototype of buffer shown in Fig. 3. However, the automaton
cannot tell the state of buffer when different part type is stored
in it. The block PS can tell the fork and join buffer in activity

diagrams. If the buffer is a fork buffer or join buffer, it should
split the states from basic buffer and form a specification.

(2) The transportation system behavior constraint

The specification restrains the behavior of the robot. The
state number of the transformed automata is the number of
buffer. There are two kinds of transition: the transition
according to the processing procedure; and the transition from
in-buffer to out-buffer. All the states are marked states. The PS
block pre-processes the procedure information in activity
diagram such as the trajectory of the robot and the decision of
InMachineBuffer or InMachineBuffer. TheT of the constrain
of transport is:

Automaton Type = specification;

{0,1,2,3,..., 1}X n  , n is the number of buffer it moves

to;

{Set of active MoveToEvent};Σ 

 {(, ,) MoveToEvent, m OutMachineBuffer,

 m OutMachineBuffer,n InMachineBuffer,

 }

{(, ,) MoveToEvent, m InMachineBuffer,

 n OutMachineBuffer};

m pmn n p

pmn Trajectory

m pmn n q

    

 



   



0 {0}x  , {0,1,2,...,n}mX  .

{Set of

MoveToEvent}

\{Set of active MoveToEvent} .

Forbidden event 

c) Step 3

The
RWA can be considered as the formalism of SCT model.

According to the R-W theory, we can transform it to the 5-

tuple into automata. When all the
RWA

models have been

transformed from SysML models, we can perform the
computation of supervisor synthesis in a traditional way. The
algorithms are based on the R-W supervisory control theory,
which are mentioned in section I and section II.

In conclusion, the model template developing process is to
create front end SysML templates with attributes based on the
real components, to construct the transformation rules for the
corresponding interface model and finally to transform the
model into automata in SCT.

VI. CASE STUDY OF THREE-LEVEL MODELING

APPLICATION

In order to illustrate three-level modeling method, am
example for supervisory control problem is presented. The case
study includes the modeling of plant and specifications and the
synthesis of supervisors. The example is cited from [14].

A. Description of the studied system

The system to be studied consists of a transfer line with
three industrial workstations M1, M2 and M3 with two buffers
of capacity of only one part respectively, as shown in Fig. 9.
The system can process two types of part: Type A and Type B.
The process plan defines that part Type A shall have an
operation sequence by workstation M1, M2 and M3 in the
order; Part Type B is processed by M1 and M2 in the order. A

robot can freely move from one buffer to another without
specifications. In this example we don’t concern about the
behavior of inlet and outlet conveyers of the system.

Fig. 9. Shematic of the production line to be studied.

Fig. 10. System Structure.

(a) Definition of Processing procedure

(b) Processing _A

(c) Processing _B

Fig. 11. Processing procedure.

B. Modeling the system by SysML model template

A BDD is used to give the system definition. Each of the
components is defined by an individual model template, as
shown in Fig. 10. Three machines, eight buffers, a robot and a
supervisor represent the real components in the system.

Another BDD and two activity diagrams are used to define
the processing procedures of part type A and type B, shown in
Fig. 11. The parameters in the model are set according to the
real system. If the user do not concern about the name of event,
all the event parameters are set default values. The capacity of
Buffer is set 1.Control Strategy is set centralized control.

The above modeling process should be done by the model
template user, and the following process is performed
automatically by the model itself.

C. Model transformation

The SCT models are obtained by
RWA . According to the

algorithms of three-level model, we can transform models to
automata representing DES formalism and the result of
computation is shown from Fig. 12 to Fig. 16.

The computation of supervisor synthesis can be performed
by Supremica. In this case we use centralized control strategy.
We set the parameter of supervisor as “centralized control”.

(a) M1 (b) M2 (c) M3

Fig. 12. Automata of Machine.

Fig. 13. Automaton of robot.

(a) B1 (b) B2 (c) B3

system

< <Block,Autoamton>>

Workstation2

< <Block,Bas ic machine> >

Values

PartProcess[1..*]:Part_Par

1M2

Workstation1

< <Block,Bas ic machine> >

Values

PartProcess[1..*]:Part_Par

1M1

Part_Par
<<Val ueType>>

Attributes

Type:RhpString

InEvent:RhpString

OutEvent:RhpString

Supervisor

< <Block,Supervisor>>

Values

Control_Strategy:RhpString=Cent...1

S

Workstation3

< <Block,Bas ic machine> >

Values

PartProcess[1..*]:Part_Par

1M3

Buffer1

< <Block,Buffer>>

Values

Capacity:int

InMachine:RhpSt...

OutMachine:Rhp...

1B1

Buffer2

< <Block,Buffer>>

Values

Capacity:int

InMachine:RhpStri...

OutMachine:RhpSt...

1B2

Buffer3

< <Block,Buffer>>

Values

Capacity:int

InMachine:RhpStri...

OutMachine:RhpSt...

1B3

Buffer4

< <Block,Buffer>>

Values

Capacity:int

InMachine:RhpStr...

OutMachine:RhpS...

1B4

Buffer5

< <Block,Buffer>>

Values

Capacity:int

InMachine:RhpStr...

OutMachine:RhpS...

1B5

Buffer6

< <Block,Buffer>>

Values

Capacity:int

InMachine:RhpStr...

OutMachine:RhpS...

1B6

Robot

< <Block,Transport>>

Values

MoveComponent[1..*...

1

R1

Inlet_Buffer

< <Block,Buffer>>

Values

Capacity:int

InMachine:RhpS...

OutMachine:Rhp...

1

B0

Outlet_Buffer

< <Block,Buffer>>

Values

Capacity:int

InMachine:RhpStri...

OutMachine:RhpSt...

1

B7

PS

<<Block,Processing procedure>>

Values

trajectory[1..*]:Rh...

Process_A of Default
<<Activity>>

<<allocate>>

Process_B of Default
<<Activity>>

<<allocate>>

:Part_A

:Part_A

M3

OP3
:Part_A

:Part_A

M2

OP2
:Part_A

:Part_A

M1

OP1

:Part_A

:Part_A

M3

OP3
:Part_A

:Part_A

M2

OP2
:Part_A

:Part_A

M1

OP1

:Part_A

:Part_A

M3

OP3
:Part_A

:Part_A

M2

OP2
:Part_A

:Part_A

M1

OP1

:Part_A

:Part_A

M3

OP3
:Part_A

:Part_A

M2

OP2
:Part_A

:Part_A

M1

OP1

:Part_A

:Part_A

:Part_B

:Part_B

M3

OP5 :Part_B

:Part_B

M1

OP4
:Part_B

:Part_B

M3

OP5 :Part_B

:Part_B

M1

OP4
:Part_B

:Part_B

M3

OP5 :Part_B

:Part_B

M1

OP4
:Part_B

:Part_B

(d) B4 (e) B5 (f) B6

Fig. 14. Automata of buffer.

(a) E1 (b) E2

Fig. 15. Automata of processing specification.

Fig. 16. Automata of robot behavior constraint, E3.

Above is the basic principle of modeling process by three-
level modeling technology. It is obvious that the only thing that
the user does is making BDDs and activity diagrams which
include all the necessary instances of template and setting the
parameter according to the real system. In Step C, all the
computations of SCT are done by inner computation core
based on SCT. Therefore, the user can just concern about the
system and achieve a rapid modeling.

VII. CONCLUSIONS AND FUTER WORK

In this paper, a new modeling approach is proposed. The
three-level modeling methodology, based on the encapsulation
of SCT model, provides model templates in SysML so that the
system designers can achieve the rapid modeling. The system
designers use the templates, define the values of them and
organize them in SysML diagrams. The models will be
automatically transformed and computed by the inner
computation core of the model. By this method, the model
users can focus on the system attributes and they do not have to
take a lot of time in system abstraction. A traditional
manufacturing system modeling process is also put forward.
We make use of a simple example to illustrate the principle of
the rapid modeling process.

In the future work, we will extend the model template
library. More templates will be designed so that it can deal with
more complex manufacturing system. What’s more, the
parameters of each template can also be extended. By the
generalization of stereotype in SysML, a basic model can be

generalized to different types so that the models have better
applicability.

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “Supervision of discrete event
processes,” in Proc. 21st IEEE Conference on Decision and Control,
Orlando, FL, USA, September 1982, pp. 1228-1229.

[2] F. Lin and W. M. Wonham, “On observability of discrete event systems.
Information Sciences,” vol. 44, no. 3, pp. 173-198, 1988.

[3] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control and Optimization, vol. 25, no.
1, pp. 206-230, Jan. 1987.

[4] P. J. Ramadge, and W. M. Wonham, “The control of discrete event
systems,” Proc. of IEEE, vol. 77, no. 1, pp. 81-98, 1989.

[5] R. Cieslak, C. Desclaux, A. Fawaz and P. Varaiya, “Supervisory control
of discrete-event processes with partial observations,” IEEE
Transactions on Automatic Control, vol. 33, no. 3, pp. 249-260, 1988.

[6] R. D. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M.
Wonham, “Formulas for calculating supremal controllable and normal
sublanguages,” Systems & Control Letters, vol. 15, no.2, pp. 111-117,
1990.

[7] S. Lafortune and E. Chen, “The infimal closed controllable
superlanguage and its application in supervisory control,” IEEE
Transactions on Automatic Control, vol. 35, no. 4, pp. 398-405, 1990.

[8] R. G. Qiu and S. B. Joshi, “A structured adaptive supervisory control
methodology for modeling the control of a discrete event manufacturing
system,” IEEE Transactions on Systems, Man, and Cybernetics-Part A:
System and Humans, vol. 29, no. 6, pp. 573-586, Nov. 1999.

[9] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of
discrete event systems,” Maths. Control, Signals Syst., vol. 1, no. 1, pp.
13-30, Feb. 1988.

[10] M. H. de Queiroz and J. E. R. Cury, “Modular supervisory control of
composed system,” Proc. 19th Amer. Control Conf., pp. 4051-4055, Jun.
2000.

[11] R R. Su, J. H. van Schuppen and J. E. Rooda, “Model Abstraction of
Nondeterministic Finite-State Automata in Supervisor Synthesis,” in
IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2527-2541,
Nov. 2010.

[12] R. Su, J. H. van Schuppen and J. E. Rooda, “Aggregative Synthesis of
Distributed Supervisors Based on Automaton Abstraction,” in IEEE
Transactions on Automatic Control, vol. 55, no. 7, pp. 1627-1640, July
2010.

[13] M. Fabian and A. Hellgren, “PLC-based implementation of supervisory
control for discrete event systems,” in Proc. of the 37th IEEE
Conference on Decision and Control, Tampa, FL, 1998, vol.3, pp. 3305-
3310.

[14] M. H. de Queiroz and J. E. R. Cury, “Synthesis and implementation of
local modular supervisory control for a manufacturing cell,” Proc. 6th
Workshop Discrete Event Syst., pp. 377-382, 2002.

[15] D. B. Silva, A. D. Vieira, E. A. P. Santos and M. A. B. de Paula,
“Application of the supervisory control theory to automated systems of
multi-product manufacturing,” 2007 IEEE Conference on Emerging
Technologies and Factory Automation (EFTA 2007), Patras, 2007, pp.
689-696.

[16] A. B. Leal, D. L. L. da Cruz and M. S. Hounsell, “PLC-based
implementation of local modular supervisory control for manufacturing
systems,” Faieza Abdul Aziz (Ed.), Manufacturing System 1ed., 2012,
pp. 159-182.

[17] S. Purao and V. Vaishnavi, “Product metrics for object-oriented systems,”
ACM Computing Surveys, vol. 35, no. 2, pp. 191-221, 2003.

[18] S. R. Chidamber and C. .F. Kemerer, “A metrics for object oriented
design,” IEEE transactions on software engineering, vol. 20, no. 6,
pp.476-493, June 1994.

[19] E. Huang, R. Ramamurthy and L. F. McGinnis, “System and simulation
modeling using SYSML,” 2007 Winter Simulation Conference,
Washington, DC, 2007, pp. 796-803.

[20] C. Cassandras and S. Lafortune, “Introduction to Discrete Event
Systems,” Springer, 2nd edition, 2007.

[21] S. C. Spangelo et al., “Applying Model Based Systems Engineering
(MBSE) to a standard CubeSat,” 2012 IEEE Aerospace Conference, Big
Sky, MT, 2012, pp. 1-20.

[22] A. Giorgetti, A. Hammad and B. Tatibouët, “Using SysML for Smart
Surface Modeling,” 2010 First Workshop on Hardware and Software
Implementation and Control of Distributed MEMS, Besan, TBD, France,
2010, pp. 100-107.

[23] E. A. P. Santos, V. J. D. Negri, and J. E. R. Cury, “A computational
model for supporting conceptual design of automatic systems,” In Proc.
of 13th International Conference on Engineering Design, pp. 517-524,
Glasgow, UK, August 2001.

[24] L. Grigorov, J. E. R. Cury and K. Rudie, “Design of discrete-event
systems using templates,” in Proc. of 2008 American Control
Conference, Seattle, WA, 2008, pp. 499-504.

[25] L. Grigorov and K. Rudie, “Techniques for the parametrization of
discrete-event system templates,” In: Proc. 10th Int. Workshop on
Discrete Event Systems, WODES ’10, Berlin, Germany, 2010, pp. 380-
385.

[26] M. H. de Queiroz, J. E. R. Cury, “Modular Supervisory Control of
Large Scale DiscreteEvent Systems,” Proc. Int. Workshop Discrete
Event Syst. Anal. Control, pp. 103-110, 2000.

[27] Y. G. Silva. “Formal synthesis, simulation and automatic code
generation of supervisory control for a manufacturing cell,” Proc. of the
20th International Congress of Mechanical Engineering, Gramado,
Brazil, vol. 4, pp.418-426, 2009.

