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Abstract—The supervisory control theory is widely used to 

deal with problems of controller design in the field of discrete 

event systems. Despite the academic attention over last several 

decades, there were few application cases in real industrial 

systems. Some scientific results have shown the difficulties of 

implementation of Supervisory Control Theory (SCT) and 

proposed some possible solutions. On the other hand, the 

difficulty of using the theory for system engineers should also be 

taken into consideration. This paper presents a modeling 

approach of SCT based on SysML. Aimed at typical 

manufacturing systems, a three-level model template is proposed 

to bridge the gap between SCT and system design. For each 

template in the modeling library, there is one equivalent model in 

three levels: the SCT model level, the interface model level and 

SCT model level. The construction of modeling template is based 

on the prototype abstraction of typical manufacturing system 

elements. The transformation algorithms between each model 

level are given in the paper. The engineer can design the system 

by the standardized templates and modeling procedures in 

system engineering level. The correspondent SCT model will be 

created according to the transformation algorithm and computed 

the solution automatically. An example will be posed to validate 

the modeling methodology application at the end of the paper. 

Keywords—discrete event system; supervisor control theory; 

SysML, modeling; manufacturing system 

I.  INTRODUCTION 

In the field of Discrete Event System (DES), SCT was first 
introduced by Ramadge and Wonham in 1982 [1]. By the 
scientific achievements within the past several decades, the 
framework of SCT forms a systematic formal paradigm to 
synthesize controllers for plants. Many solutions have been 
proposed to deal with SCT problems such as supervisor 
synthesis [2], [3], controllability [4], observability [5], and 
supremal sublanguage [6], [7]. On the other hand, the number 
of states and transitions grow sharply with the scale increasing 
of system [8]. In order to deal with de state-space explosion 
problem, different control structures were proposed by research 
works. Wonham and Ramage introduced the concept of 
modular control [9] and Queiroz and Cury extends the 
approach to local modular control [10]. Some new control 
strategies have been put forward during the past several years 
such as the coordinated distributed supervision and aggregated 
distributed supervision proposed by Su [11], [12], by which an 
coordinator is designated to ensure nonblocking among local 
supervisors. 

However, despite the academic achievements of SCT over 
last several decades, there were few application cases in real 
industrial manufacturing systems. There exist several obstacles 
between the theory and application. Some researchers endeavor 
to deal with the difficulty of Programmable Logic Controller 
(PLC) implementation of SCT. Scientific result has shown that 
the main problems in supervisory control implementation are 
causality, avalanche effect, simultaneity, choice, etc. [13]. 
There are some possible solutions to deal with the problems: 
Queiroz and Cury proposed a control structural control 
implementation of modular control [14] and examples are 
posed to illustrate the approach [15]. In [16] DECON9 
methodology was proposed to provide a standardized approach 
and solution to many problems that arise while implementing 
SCT into PLC. 

Another problem for application of SCT is the modeling of 
real system. The SCT provides us a theoretical basis for 
behavior analysis of components in the form of formal 
language or automaton. The SCT has its limitation in modeling 
large-scale structured discrete event systems. The automaton 
just represents the behavior aspect of the system and the 
relationship between the components, the interfaces or 
interaction can hardly be recognized. To model a discrete event 
system by SCT, system designers should focus on abstract the 
system into the key elements in SCT such as state, event, 
alphabet, transition or automata composition etc. The abilities 
of system engineers to utilize SCT for modeling system can be 
more or less limited.  

The model-based system modeling language gives us the 
opportunity to deal with the second problem above, by which 
designers can pay more attention to the system attributes 
themselves. Some researchers contributed the object-oriented 
model. Purao and Vaishnavi [17] proposed an ordered set with 
three elements (E, A, M) to represent an object-oriented model. 
Chidamber and Kemerer define a formal object-oriented model 
describing the system [18]. Huang extend the modeling method 
based on SysML and proposed to use SysML to model a 
system to be simulated and to support the automatic generation 
of simulation models [19]. All the methodologies provide the 
possibility to propose a new standardized model template. 

The template itself is not enough to deal with the modeling 
problem. Some questions could be posed: If the automata 
model is correctly abstracted from the real system or if there is 
any standardized model template can be used to avoid 
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modeling mistakes. In this paper, a new rapid modeling 
approach in SysML, a Model Based System Engineering 
(MBSE) modeling language, will be proposed for template 
design of controller. The new modeling approach is aimed to 
model a DES and realize an automatic supervisor synthesis by 
standard model templates. A three-level model is put forward 
to achieve the transformation SysML model to SCT model 
based on standardized templates. With the proposed modeling 
method, system designers can focus on the system attributes 
and do not need to abstract the system in traditional SCT ways. 
This paper will introduce the modeling method by three 
sections: the proposed model, the model prototype and the 
modeling procedure. An example will be posed to validate the 
modeling methodology at the end. 

II. PRELIMINARIES 

A. Supervisory Control Theory 

In SCT framework, we regard the uncontrolled systems as 
plant and synthesize a supervisor to ensure the control actions 
of the plant according to the specifications. The supervisor 
makes sure the controlled system behaves within minimal 
limitations. 

The behavior of a plant can be denoted as an automaton G 

such that
0( , , , , )mG X Σ x X , where X is the finite set of 

states; Σ  is the alphabet; : X Σ X   is the state transition 

function; 
0x X is the initial state and 

mX X is the set of 

marked states. The generated language of G  
*

0( ) { : ( , ) is define}L G s E f x s     represents the free behavior 

of the plant and *

m 0 m( ) { : ( , ) X }L G s E f x s   the marked 

language represents the marked behavior of the plant. 

The specification can also be modeled by an automaton H 

such that
0( , , , , )mH Y Σ' ' y Y where Y, 

0y Y and 
mY Y

denote set of states, the initial state and the set of marked states 
respectively. A supervisor S is a function from the language 
generated by G to the power set of Σ . Assuming that Σ' Σ , 
the controlled behavior under supervisor S can be represented 
by the product of G and H, if G E is controllable with regard 

to G and
cΣ : 

 0 0 0 0( , , ,( , ), )G E Ac X Y x y X Y      

Where,  


( , ) if ( , , ' ) ( , , ' ) '

undefined      otherwise

x' y' x x y y   


      
 


 

The Ac operator means the accessible part of an automaton. 
If all events are controllable, this operation produces the 
controlled system behavior respecting to the specification. 
However, if G E can be verified uncontrollable, an algorithm 

should be performed to compute the maximal behavior [20]. 

B. SysML 

SysML is one of the graphical modeling languages for 
systems engineering applications, first proposed by Object 

Management Group (OMG) together with the International 
Council on Systems Engineering (INCOSE) in 2001 and 
adopted as a standard in May 2006 (http://www.omgsysml.org). 
SysML is an extension of the subset of Unified Modeling 
Language (UML) with nine kinds of diagrams such as block 
definition diagram (BDD) and activity diagram, by which 
SysML can represent systems and each components, as well as 
their behavior and structure. 

SySML has been widely put into application for modeling 
in system engineering. For example, an MBSE Challenge 
project was established to model a hypothetical FireSat satellite 
system to evaluate the suitability of SysML for describing 
space systems [21]. Another example is the requirement 
modeling of smart surface by SysML [22]. The great advantage 
of visualization and facility of modeling by SysML gives us the 
great opportunity to modeling the typical manufacturing 
system. 

III. THE THREE-LEVEL MODELING APPROACH 

The traditional modeling process of supervisory control can 
be divided into three steps: abstraction, modeling and synthesis. 
At first step, the behaviors of component and requirements are 
abstracted into plant and specification respectively. Then, all 
the elements in five-tuple formalism should be determined and 
transform the formalism model to automata. By SCT, the 
supervisor is synthesized in different ways according to the 
control strategies. Finally, the controllability, observability and 
nonblocking of the supervisor should be verified and purge the 
forbidden states and transitions. 

The new proposed modeling method is quite different from 
the traditional ways. The automata abstraction may not be 
necessary when there are objected-oriented and automatically-
transformed model templates. The inputs of the modeling 
method are key parameters of the system attributes and task 
requirements and the outputs are the target supervisor design. 
The nature of the modeling method is the rapid transformation 
and computation from real system design to SCT solutions. 

To achieve rapid modeling SCT in SysML by system 
engineers, the modeling methodology should meet the 
following requirements: 

 The designer can model the system in the way he is 
familiar with rather than the formalism which is 
difficult to understand. Besides, The design can just 
focus on the component organization, the system 
requirements and key attributes. The templates library 
offers enough model prototypes for the designer and 
models can be customized. 

 The SysML model can be transformed to SCT model 
automatically. According to the system structure and 
requirements input, the back end SCT model is created. 
The computation of supervisor synthesis under given 
specification is performed at the same time. 

The three-level model template consists of SysML model, 
interface formal model and SCT model. The traditional SCT 
model becomes the bottom model, which are not modeled 
directly by the system designer. SCT model is encapsulated by 
two other models: the SysML model templates are front end 



directly used by the designer. Between the two levels, the 
interface model should be constructed to transform the SysML 
template into SCT model. The schematic of three-level model 
is shown in Fig. 1. When modeling a system, the user models 
the system by SysML template and organizes them in diagrams 
such as Block Definition Diagram (BDD). Then this front-end 
model will be transformed to the SCT model and computer 
automatically. The core computation algorithms are based on 
SCT. 

a) SysML model level 

In SysML level, the SysML model is the correspondent 
model template representing the system element based on 
SysML. The model template is an abstract of the element in the 
system. The SysML model is used to record the inputs of 
system attributes: the structure, the relation between the 
components, the parameters and the requirements, etc. In the 
three-level model, it can be considered as the input module. All 
the necessary information should be defined in SysML model. 
The SysML model should be in the form of template in order to 
meet the requirement of rapid modeling. 

The SysML templates are constructed based on the 
prototypes of manufacturing system in Section IV. The key 
attributes of a real component are extracted and a SCT model 
of it can be transformed by these attributes. That means the 
attributes can be mapped to all the five elements of 5-tuple 
formalism. 

All SysML models should be presented in several SysML 
diagrams for describing the system structures and requirements. 
SysML provides us nine kinds of diagrams. Not all the 
diagrams must be used for modeling, but the diagrams should 
be interpreted by the three-level model semantically. 

b) Interface model level 

The interface formal model is the core of the three-level 
model. The function of it is to define the transformation 
specifications from SysML model to SCT model. The interface 
model can be formalized by a three-tuple: 

 ( , , )s RWMI A A T  

      Where, MI is denoted as formal model of each 

corresponding SysML model; 
sA is the abstract data type 

(ADT) which saves all the input information of the element 

from SysML model; 
0( , , , , )RW mA X Σ x X is five tuple of 

the corresponding SCT formalism; T is denoted as the set of 

transformation algorithms from sA to RWA . 

ADT
sA consists of two parts: data and operation. The data 

part stores the input information by data structure. The task of 

operations is pre-treatment of data sA before transformation. 

For example, if the input data have default value, there should 
be operations to fill in the appropriate data.  T is the function 

set mapping sA to RWA . T should make sure that all the data 

in can be correctly transformed to RWA . 

c) SCT model level 

 

Fig. 1. Schematic of the Three-level model. 

SCT model is the output computation core of three-level 
model. It is encapsulated in the other two models. The SCT 
model can be obtained directly from because it is the formal 
model of SCT. In this level, the form of model is an automaton. 
Based on the R-W theory, the final result of supervisor 
synthesis can be computed when all the plants and 
specifications have been built. 

The three-level model template is abstracted based on the 
real manufacturing system components. The SCT abstraction 
prototype of components is of great importance for the three-
level model especially for SysML model and automatic 
transformation algorithm in interface model. The construction 
of the three-level model is based on the infrastructure-level 
SCT prototype and encapsulates it as user-oriented model. 

IV. PROTOTYPE OF TYPICAL MANUFACTURING SYSTEM 

COMPOMENT 

The conception of template design for DES was proposed 
in [23] by using entities and channels. In [24] and [25], the 
authors parameterize DES template by which the template can 
be instantiated to different models in application. These papers 
focused on the algorithms of transforming the parameterized 
models and supervisor synthesis. The proposition here, 
however, is based on the modeling prototype of templates of 
manufacturing system and automatic transformation in three-
level model. 

The work started from the existing case study of 
manufacturing system. According to the case studies of [15], 
[16], [26], [27], the basic components which can compose a 
manufacturing system under supervisory control at the lower 
limit are machines, buffers, transportation system and 
supervisors. Besides, the processing procedures can be 
considered as specifications and safety requirements. 
According to SCT, the basic model prototypes must contain the 
three kinds of prototype: plant, specification and supervisor. In 
this section, we intend to show the main logic and method of 
abstracting the typical manufacturing system components. 

A. Plant 

The plant abstracting the real components in manufacturing 
system can be a machine, a robot, etc. The event sets between 
plants usually have no intersection. Here, we use the prototype 
modeling of machine and robot as examples. 

a) Machine 

All the workstation can process a series types of part can be 
abstracted into machine, for example, a drilling machine, an 



assembling station, etc. The SCT prototype can be defined as 
shown in Fig. 2(a). Different processing can be represented by 
state Si in the automaton. The events of starting processing ai

and finishing processing fi trigger the transitions for each state. 

According to the paradigm of [14], the starting events are 
defined as controllable events and the finished events are 
defined as uncontrollable. 

Besides, a machine can also be extended to a machine with 
failure treatment, shown in Fig. 2(b). The prototype can 
simulate the behaviors of a machine to which happens an 
unexpected failure and wait for maintenance. Compared with 
the aforementioned machine, an additional state and its 
transitions represent the state of failure and the repair. 

b) Transportation system (robot) 

The Transportation system, usually in form of robot, is to 
take a part from a buffer and put it to another. Fig. 3 shows the 
SCT prototype of a robot. The number of buffer decides the 
state number of automaton. The event sets _ , 1,2...A i i n   

represent move-to-position actions and event , 1,2...bi i n  for 

each state represent the arrive-at-position actions. 

B. Specification 

The specifications represent the behavior constraints of the 
components in manufacturing system. The events of 
specification event set usually belong to one or several plants. 
Here, the prototype modeling of buffer and processing 
procedure are used as examples. 

a) Buffer 

Buffer can temporarily store several parts between 
workstations. Buffer is usually regarded as specification in 
SCT. The prototype of stock buffer, as example, is defined as 
follows:  

       

            (a)  Machine                    (b) Machine with failure treatment 
Fig. 2. SCT prototype of machine . 

 

Fig. 3. SCT prototype of robot. 

 

Fig. 4. Example of SCT prototype of buffer. 

 The maximum capacity of a buffer is the key parameter 
to determine the number of state. The state of empty is 
the initial state and marked state. 

 The machines connected to the buffer determine the 
events and transitions. The end events of machines that 
enter the buffer consist of the inlet event set _A j ; the 

start events of machines that exit from buffer consist of 

the outlet event set _A k . 

b) Processing procedure 

The processing procedures are specifications to impose the 
correct processing sequence of parts to be processed. It 
establishes requirements as follows: 

 Coordinate the behaviors of buffer: 

The processing procedures of different parts should 
determine the fork behavior specifications of the 
relative outlet buffers and the join behavior 
specifications of the relative inlet buffers. 

 Restrain the behavior of the robot: 

The robot can move freely between the target 
components. The processing procedures determine the 
working trajectory of the robot. Two logics should be 
taken into consideration: (1) The robot should move 
between buffers according to the processing procedure; 
(2) The robot should move from one outlet buffer of 
machine to inlet buffer to another machine. 

C. Supervisor 

The key point of supervisor we concern about is the result 
of different control strategies. The computation algorithm in 
the framework of SCT is chosen according to the designated 
controller design and the supervisor is computed based on the 
plants and specification. Therefore, the parameter which must 
be contained in the supervisor model is the control strategy. 

A supervisor prototype should have two tasks: the control 
strategy choice and the computation based on the chosen 
control strategy when the plants and specifications are given. In 
our library, there are different control strategies: the centralized 
control, decentralized control and local modular control, etc. 

V. MODEL TEMPLATE DEVELOPING PROCEDURE 

The target participants of the modeling methodology can be 
divided into two main parts: template designer and model user. 
Model template designers focus on create and extend the 
models in the Three-level template library; the modeling user’s 
work is to analyze the system structure and requirements and 
establish the system model by existed or customized templates. 
The transformation and computation will be automatically 
performed after the models are created. 



Here, the main development approach of the three-model 
method template and its principle of modeling, transformation 
and computation are explained in detail. The SysML modeling 
tool to use is IBM Rational Rhapsody. 

a) Step 1 

In section IV, we have mentioned the template prototypes 
in threes types and here templates is defined in SysML for each 
corresponding prototype. According to the three kinds of 
prototypes, all the typical manufacturing system element 
models can be generalized from three stereotypes, shown in Fig. 
5. It should be pointed out that the stereotype is just a logical 
classification and key word of the element to be transformed to 
SCT model and have no additional attributes. Based on the 
stereotype categories, all the elements can be classified by 
generalization from one of them. For example, a machine that 
process different part types can be abstracted as a block named 
with stereotype “machine”, generalized by stereotype “plant”.  

Now that the prototype automata can be abstracted from the 
real system, all the prototypes can also be parameterized from 
logic consideration. The key parameters to be abstracted which 
are able to offer the enough information for automatic 
instantiation. The parameterized models are then remodeled in 
the form of SysML with variables. 

 

Fig. 5. Stereotype structure. 

      
Fig. 6. Definition of machine and buffer in SysML. 

            

Fig. 7. Definition of transport system and supervisor 

        
(a)  Block definition                    (b)  Activity diagram 

Fig. 8. Definition of processing procedure in SysML. 

The attributes of a machine are to input the information of 
data part: the part name, start events and end events, which are 
enough for automatic transformation, shown in Fig. 5. The 
attributes of machine can have default value. A buffer can also 
be defined as a block with attributes: capacity, Inlet machine 
and Outlet machine. Fig. 6 shows the logic of the determinacy 
of the buffer when the three attributes are determined. The 
block of transport system and supervisor can also be defined, 
shown in Fig. 7. 

It should be pointed out that not only the structure elements 
but the behavior specifications can be defined by SysML 
model. Fig. 8 shows an example of SysML model of 
processing procedure. A block with stereotype “processing 
procedure” represents the model of processing procedure. 
Several activity diagrams are allocated to define the processing 
procedures of different type parts. The parameter “trajectory” 
defines the exact processing sequence of parts. 

b) Step 2 

The second step is to create the interface formal model for 
each block with parameters. In the formal model MI, the ADT

sA save and pre-process the input data and key words from 

SysML, which are important to transform the SysML model to 
SCT model. The ADTs of a machine and a buffer are shown in 
TABLE I. 

In Data part of 
sA of machine, the stereotype of model is 

stored so as to clarify the SCT model type when transforming. 
Part_Par are the key information for transformation. In 
operation part, the function Default value definition ( ) is to fill 
in the default values automatically and Type number count ( ) 
is to pre-process the additional parameter for transformation. 

The function setT in model MI is the method set which is 

to transform sA to SCT formalism RWA . The nature of the 

transformation is mapping the parameters given by sA to 

parameter in RWA  denoted by : s RWAT A .  

T of machine can be defined as follows: 
Automaton Type = plant; 

{0,1,2,..., }X n , n is the number of part type; 

{Set of InEvent} {Set of OutEvent}Σ   ; 

{(0, , ) Part_Par[n].InEvent,n=1,2,...,n}

{( , ,0) Part_Par[n].OutEvent,n=1,2,...,n};

p n p

n q q

   

     

0 {0}x  , {0}mX  . 

Autoamton
<<Stereotype>>

Machine
<<Stereotype>>

Plant
<<Stereotype>>

Specification
<<Stereotype>>

Supervisor
<<Stereotype>>

Buffer
<<Stereotype>>

Transport
<<Stereotype>>

Processing procedure
<<Stereotype>>

Machine with failure
<<Stereotype>>

Basic machine
<<Stereotype>>

Part_Par
<<ValueType>>

Attributes

InEvent:RhpString

OutEvent:RhpString

Type:RhpString

Workstation1

<<Block,Machine>>

Values

PartProcess[1..*]:Part_Par

Buffer

<<Block,Buffer>>

Values

Capacity:int

InMachine:RhpString

OutMachine:RhpString

TransportSystem

<<Block,Transport>>

Values

MoveComponent[1.....

Supervisor

<<Block,Superv isor>>

Values

Control_Strategy:Rh...

PS

<<B lock,Process ing procedure>>

Val ues

trajectory[1..*]:Rhp...

Process_i of Default

<<Activity>>

<<allocate>>



TABLE I.  THE ADT 
sA OF MACHINE AND BUFFER 

Machine Buffer 

Data: 

Name of model; 

Stereotype; 

Data of Part_Par. 

Operations: 

Default value definition ( ); 

Type number count ( ); 

Data: 
Name of model; 

Stereotype; 

Capacity; 

InMachine; 

OutMachine. 

Operations: 

The Automaton Type assignment should be retrospect to its 
father stereotype. The developing of a buffer is similar to the 

machine. The ADT 
sA of a buffer is shown in TABLE I. 

There is no operation in buffer because data part is enough for 
the transformation. The T of a buffer can be defined as 
follows: 

Automaton Type = specification; 

{0,1,2,..., }X n , n is the capacity; 

{Set of InMachine.OutEvent}

{Set of OutMachine.InEvent};

Σ 

  

{( , , 1) InMachine.OutEvent,n 0,1,...,n 1}

{( 1, , ) OutMachine.InEvent,n 0,1,...,n 1};

n p n p

n q n q

      

     

0 {0}x  , {0}mX  . 

The mapping should make sure that
sA can be interpreted 

into
RWA correctly whatever the instance is, or the model should 

be rebuilt. The model must have the characteristic of 
universality.  

In the same way, the T of a robot can be defined as 
follows: 

Automaton Type = plant; 

{0,1,2,3,..., }X n , n is the number of buffer it move to; 

{Set of MoveToEvent}

{Set of EndMovevent};

Σ 


 

{(0, , ) MoveToEvent, n 1,2,...,n,

       i 1,2,...,i -1,i 1,..,n}

      {( , ,0) EndMoveEvent, n 1,2,...,n};

pin n pin

n qn qn

    

 

   

0 {0}x  , {0}mX  . 

The developing of processing procedure is a little more 
complex that machine and buffer. The activity diagrams are the 
specific requirements of processing procedure and block “PS” 
is to gather all the necessary information in activity diagrams 
and process them to specifications. Based on the block PS, two 
kinds of specification should be transformed: coordinating 
specification of buffer behavior and transportation system 
behavior constraint. 

(1) Coordinating specification of buffer behavior 

The modeling of basic buffer behavior is based on the 
prototype of buffer shown in Fig. 3. However, the automaton 
cannot tell the state of buffer when different part type is stored 
in it. The block PS can tell the fork and join buffer in activity 

diagrams. If the buffer is a fork buffer or join buffer, it should 
split the states from basic buffer and form a specification. 

(2) The transportation system behavior constraint 

The specification restrains the behavior of the robot. The 
state number of the transformed automata is the number of 
buffer. There are two kinds of transition: the transition 
according to the processing procedure; and the transition from 
in-buffer to out-buffer. All the states are marked states. The PS 
block pre-processes the procedure information in activity 
diagram such as the trajectory of the robot and the decision of 
InMachineBuffer or InMachineBuffer. TheT of the constrain 
of transport is: 

Automaton Type = specification; 

{0,1,2,3,..., 1}X n  , n is the number of buffer it moves 

to; 

{Set of active MoveToEvent};Σ 

 {( , , ) MoveToEvent, m OutMachineBuffer,

       m OutMachineBuffer,n InMachineBuffer, 

       }

{( , , ) MoveToEvent, m InMachineBuffer, 

       n OutMachineBuffer};

m pmn n p

pmn Trajectory

m pmn n q

    

 



   



0 {0}x  , {0,1,2,...,n}mX  . 

 
 

                       

{Set of 

    

MoveToEvent}

\{Set of active MoveToEvent} .

Forbidden event 
 

c) Step 3 

The
RWA can be considered as the formalism of SCT model. 

According to the R-W theory, we can transform it to the 5-

tuple into automata. When all the 
RWA

 
models have been 

transformed from SysML models, we can perform the 
computation of supervisor synthesis in a traditional way. The 
algorithms are based on the R-W supervisory control theory, 
which are mentioned in section I and section II. 

In conclusion, the model template developing process is to 
create front end SysML templates with attributes based on the 
real components, to construct the transformation rules for the 
corresponding interface model and finally to transform the 
model into automata in SCT. 

VI. CASE STUDY OF THREE-LEVEL MODELING 

APPLICATION 

In order to illustrate three-level modeling method, am 
example for supervisory control problem is presented. The case 
study includes the modeling of plant and specifications and the 
synthesis of supervisors. The example is cited from [14]. 

A. Description of the studied system 

The system to be studied consists of a transfer line with 
three industrial workstations M1, M2 and M3 with two buffers 
of capacity of only one part respectively, as shown in Fig. 9. 
The system can process two types of part: Type A and Type B. 
The process plan defines that part Type A shall have an 
operation sequence by workstation M1, M2 and M3 in the 
order; Part Type B is processed by M1 and M2 in the order. A 



robot can freely move from one buffer to another without 
specifications. In this example we don’t concern about the 
behavior of inlet and outlet conveyers of the system. 

 

Fig. 9. Shematic of the production line to be studied. 

 

Fig. 10. System Structure. 

 

(a) Definition of Processing procedure 

 

(b) Processing _A 

 

(c) Processing _B 

Fig. 11. Processing procedure. 

B. Modeling the system by SysML model template 

A BDD is used to give the system definition. Each of the 
components is defined by an individual model template, as 
shown in Fig. 10. Three machines, eight buffers, a robot and a 
supervisor represent the real components in the system.  

Another BDD and two activity diagrams are used to define 
the processing procedures of part type A and type B, shown in 
Fig. 11. The parameters in the model are set according to the 
real system. If the user do not concern about the name of event, 
all the event parameters are set default values. The capacity of 
Buffer is set 1.Control Strategy is set centralized control.  

The above modeling process should be done by the model 
template user, and the following process is performed 
automatically by the model itself.  

C. Model transformation 

The SCT models are obtained by
RWA . According to the 

algorithms of three-level model, we can transform models to 
automata representing DES formalism and the result of 
computation is shown from Fig. 12 to Fig. 16. 

The computation of supervisor synthesis can be performed 
by Supremica. In this case we use centralized control strategy. 
We set the parameter of supervisor as “centralized control”.  

           

(a) M1                                    (b) M2                            (c) M3 

Fig. 12. Automata of Machine. 

 

Fig. 13. Automaton of robot. 

           

(a) B1                            (b) B2                         (c) B3 
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(d) B4                             (e) B5                        (f) B6 

Fig. 14. Automata of buffer. 

   

(a) E1                                       (b) E2 

Fig. 15. Automata of processing specification. 

 

Fig. 16. Automata of robot behavior constraint, E3. 

Above is the basic principle of modeling process by three-
level modeling technology. It is obvious that the only thing that 
the user does is making BDDs and activity diagrams which 
include all the necessary instances of template and setting the 
parameter according to the real system. In Step C, all the 
computations of SCT are done by inner computation core 
based on SCT. Therefore, the user can just concern about the 
system and achieve a rapid modeling.  

VII. CONCLUSIONS AND FUTER WORK 

In this paper, a new modeling approach is proposed. The 
three-level modeling methodology, based on the encapsulation 
of SCT model, provides model templates in SysML so that the 
system designers can achieve the rapid modeling. The system 
designers use the templates, define the values of them and 
organize them in SysML diagrams. The models will be 
automatically transformed and computed by the inner 
computation core of the model. By this method, the model 
users can focus on the system attributes and they do not have to 
take a lot of time in system abstraction. A traditional 
manufacturing system modeling process is also put forward. 
We make use of a simple example to illustrate the principle of 
the rapid modeling process. 

In the future work, we will extend the model template 
library. More templates will be designed so that it can deal with 
more complex manufacturing system. What’s more, the 
parameters of each template can also be extended. By the 
generalization of stereotype in SysML, a basic model can be 

generalized to different types so that the models have better 
applicability. 
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