
A Component-Based Approach for Supervisory Control

Gábor Kov́acs
Dept. Control Engineering and

Information Technology
Budapest University of

Technology and Economics
Budapest, Hungary

Email: gkovacs@iit.bme.hu

Laurent Píetrac
Laboratoire Amp̀ere

INSA Lyon
Villurbanne, France

Email: laurent.pietrac@insa-lyon.fr

Kiss Bálint
Dept. Control Engineering and

Information Technology
Budapest University of

Technology and Economics
Budapest, Hungary

Email: bkiss@iit.bme.hu

Abstract— This paper reports a novel approach for the super-
visory control of discrete event systems. Based on components,
the approach provides principles of object-oriented software
design to be used in the framework of Supervisory Control
Theory. The concepts of abstract and concrete components
allow the modeling of complex systems at a high level of abstrac-
tion, making specification and control design easier. Besides
aiming modularity and reusability, the proposed framework
allows to introduce concepts of composition, polymorphism and
inheritance into the design of supervisory controllers.

I. I NTRODUCTION

In the last decades, evolving complexity of industrial and
commercial systems have raised the need for formal methods
to ensure safe operation without extensive use of validation
and verification. To answer these needs, Supervisory Control
Theory (SCT) has been proposed, which guarantees that the
closed loop behavior will meet the prescribed specifications.

On the other hand, SCT uses ordinary state machines for
modeling, which makes the procedure of control synthesis
cumbersome. Although state machines are well formalized,
the size of their state space rises drastically with the com-
plexity of the system modeled, posing a difficulty also for the
control engineer responsible for modeling and specification,
and also for numerical computation of the supervisor. To
overcome this problem, different hierarchic and modular
approaches for supervisory control has been proposed (see,
for example, [1] and references within). However these
approaches answer many of the arising problems, there exists
no unified framework providing modularity and reusability,
the two features mostly desired by control engineers.

In the domain of software development, the object-
oriented paradigm has quickly become a widely used solution
for these problems. The object-oriented paradigm proposed
features like polymorphism or inheritance, which might be
used also in control design, and are adopted by various
approaches, e.g. by the standard IEC 61499 [2]. However,
these principles have to be adapted such that they meet the
formalism of SCT. Although propositions have been made
to include object-oriented paradigms in the framework of
supervisory control (see [3] or [4]), no unified approach
exists to take advantage of object-oriented principles in the
field of control design. In this paper, the author tries to bridge

the gap between the two fields by proposing a component
based methodology for supervisory control design.

The remaining part of this paper is organized as follows.
Section II summarizes briefly the basic concepts and nota-
tions of SCT. Section III introduces components, building
blocks of the approach, while section IV presents some
concepts supported by the framework. Section V concludes
the paper.

II. PRELIMINARIES

Here only some fundamental principles and notations of
SCT [5] and automata theory are presented in order to keep
the paper as self-contained as possible. For further details
the reader may refer to [6] and [7].

The discrete-event systemG is described by the 5-tuple
G = (QG,ΣG, ρG, qG

0
, QG

m) with QG as its state set,ΣG as
its event set,ρG : QG × ΣG∗

→ QG as its extended partial
transition function,qG

0
as its initial state andQG

m as the set
of its marking states. The event setΣG can be divided into
the distinct sets of controllable and uncontrollable events so
that ΣG = ΣG

C ∪ ΣG
U whereΣG

C ∩ ΣG
U = ∅. The notation

ρ(q, σ)! means that there exists a transition associated with
the eventσ ∈ ΣG leaving the stateq ∈ QG.

The language generated byG is denoted byL(G). The
prefix closure of a languageL is denoted byL. An important
operation on languages is the natural projection to a given
alphabetΣ, defined by the followings:

PΣ(ε) = ε

PΣ(σ) =

{

σ if σ ∈ Σ
ε otherwise

PΣ(σ.t) = PΣ(σ).PΣ(t)

The inverse projection is defined byP−1

Σ
(s) = {t ∈ Σ |

PΣ(t) = s} and can be also extended to languages. The ex-
tension of these projections to languages is straightforward.

The synchronous composition of two DESsG1 and G2

describes the operation of a system in whichG1 andG2 op-
erates synchronously. The synchronous product operation of
two DESs is defined byL(G1 ‖ G2) = P−1

ΣG1∪ΣG2
(L(G1))∩

P−1

ΣG1∪ΣG2
(L(G2)).

The goal of supervisor synthesis is to define a supervisor
which can restrict the operation of the system to meet the



constraints of the specifications, modeled by a DESE. The
supervisorS is a function S : L(G) → Γ defined by
Γ = {γ = PWR(Σ) | γ ⊇ ΣU} where γ represents
the set of events authorized byS andPWR(Σ) is the set
of all subsets (the power set) ofΣ. If the specifications
are controllable, the automatonH = S/G describing the
supervised system is the product ofG and E. In other
cases the supremal controllable sublanguage (or maximal
permissive sublanguage) ofE can be found, which allows
the greatest possible set of controllable events, see [8] and
[9]. This sublanguage allows only those operations described
by L(G) which respects the constraints given byE.

III. A COMPONENT-BASED APPROACH

In order to illustrate the principles presented in this paper,
a simple running example of a manufacturing cell depicted
by Fig. 1 will be used in the followings. The system is
composed of two 2-DOF pick and place arms, each one
consisting of two translational joints and a gripper.

Development of a controller based on the methodology
of SCT needs a model of the plant, describing the possible
evolution of its IOs, and therefore resulting in a large
state space. The classical way to overcome this problem
is to decompose the system to subsystems, and then create
models for these subsystems independently, which can then
be composed by the operation of synchronous composi-
tion. This naive approach of modularity might simplify the
modeling process, however, the specifications have to be
given for the global model, using events corresponding to
IOs of subsystems. Even if specifications are composed of
sub-specifications, the problem of large state spaces arises
during the synthesis of the controller. For this simple system,
such a monolithical model contains nearly 4 000 states.
The component-based methodology described in the sequel
helps avoiding the problem of state explosion and provides
a solution for reusing models and using different levels
of abstraction, allowing easy modification of the controller
if one of the parts is replaced by another with different
technological details but with same functionnality (e.g. a
hydraulic cylinder is replaced by an electrical linear drive).

The key concept of the object oriented paradigm is the
object itself, so at first its definition should be studied.
According to the common definition, the object is a part of
the system which can beuniquely identifiedand is described
by its behavior with regard to its environment, itsinternal
structureand itsstate.

X

Z Arm A Arm B

Fig. 1. Layout of the example

Considering the emphasized features, one can relate the
notion of object to the concept of component, of which the
system is built from. In case of a robotic arm, one would
choose the gripper and the two joints as components. These
components can be uniquely identified (i.e. gripper, axis X
and axis Z), and their behavior, information on their internal
structure in the form of possible evolution of their IOs and
their states are stored in the corresponding FSM-models.
Here another concept, namely the one of classes is recalled,
which is a description of the organization and actions shared
by one or more similar objects. Since the two joints are
identical, one might consider the class Axis, and the objects
Axis X and Axis Z as its instances. In the followings, the
term component will be used in the meaning of class.

In order to achieve modularity and reusability, the first step
is to separate the behavior (i.e. abstract functionality) and
implementation of classes. In the object-oriented paradigm,
it can be achieved by defining an abstract class, the interface,
which contains only the declaration of the methods, and
therefore describes a behavior in an abstract manner. Based
on abstract interfaces, classes can be defined, implementing
the methods. However, in the field of control engineering,
one has to deal not with abstract constructs, but well defined,
physically existing components, so the basis of modeling
should be the physical manifestation of the component.

The aim is to, based on a traditional discrete-event IO
model, obtain an appropriate functional model, describingthe
behavior of the component at a higher level of abstraction.
The complete procedure of passing from a model to an other
is given in [10], here only the most important definitions will
be given and the modeling procedure, summarized by Fig.
2, will be briefly presented.

A. Models of a component

Definition 1: The technological model represents all pos-
sible evolution of inputs and outputs of the component
which are allowed by its physical manifestation. Formally,
the technological model is given by the 5-tupleGTech =
(QTech,ΣTech, ρTech, qTech

0
, QTech

m ).
1) Nominal model: In practice there are requirements

which shall be respected no matter what functionality the
given component should realize. They represent the avoid-
ance of operations which are physically possible, and there-
fore allowed by the technological model, but which cause
instable or dangerous behavior of the component. For exam-
ple, a linear axis should not be started towards the negative
direction if it is at the negative extremity. These specifications
are referred to as Specifications of Safety, Security and
Liveliness (S3L) which is given by the languageES3L.

Since the aforementioned specifications need to be re-
spected, a suitable nominal model can be obtained as the
generator of the supervised plant respectingES3L, i.e. the
minimal generator of the supremal controllable language of
ES3L with respect toGTech.

Definition 2: The nominal model defines the most permis-
sive operation of the process respecting the specificationsof



Technological model

Nominal model

C S3L

Task Model 1

Task Model n

...

‖

TASC

Integral Model

PΣT

Functional Model

Fig. 2. Models of a component

safety, security and liveliness and is given by the 5-tuple
HN = (QN ,ΣN , ρN , qN

0
, QN

m).

2) Tasks: The resulting nominal model depicts only op-
eration of the component allowed byES3L. However, the
description is given in details, by technological events, so the
nominal model is an ideal candidate to build an abstract func-
tional model on. The way from technological to functional
representations is paved by the tasks, gathering appropriate
event sequences of the nominal model.

Definition 3: The task core model is a suitably selected
part of the technological model and is described by the 5-
tuple GTc

j = (QTc
j ,ΣTc

j , ρTc
j , qTc

0,j , Q
Tc
m,j) for the jth task.

Its state and event sets are subsets of the nominal model,
i.e. QTc

j ⊆ QN andΣTc
j ⊆ ΣN , and its transition function

is defined such that the task core model generates a prefix
event sequence as the nominal model starting from its state
equivalent toqTc

0,j .
Before giving the definition of the task, two new events

shall be introduced. The first one, corresponding to the start
of a task, is the controllablestart eventand is denoted by
σstart
j . The other, reporting the completion of a task, is the

uncontrollableconfirmation eventand is denoted byσconf
j .

These events are collected to the alphabet of task events
ΣT =

⋃

j{σ
start
j , σconf

j }.

Definition 4: A task is given by the 5-tupleGT
j =

(QT
j ,Σ

T
j , ρ

T
j , q

T
0,j , Q

T
m,j). The state set of the task core

model is extended by a new initial state, i.e.QT
j = qT

0,j∪Q
Tc
j ,

and the event set of the task is the union of the event set
of the corresponding task core model and the task events:
ΣT

j = ΣTC
j ∪ {σstart

j , σconf
j }. The initial state of the task

model is defined to be the newly added state, i.e.qT
0,j = q′

0
.

The transition function is defined as follows:

ρTj (q
T
0,j , σ

start
j ) = qTc

0,j

ρTj (q
T
0,j , σ) = qT

0,j , ∀σ ∈ ΣTc
j

ρTj (q, σ
conf
j ) = qT

0,j , q ∈ QTc
m,j

qT
0

qT
1

qT
2

qT
3

qT
4

qT
5

extstart

mot:1 neg↓ pos↑ mot:0

extconf
Σ
Tc

Fig. 3. Model of the extension task

q0

q1

q2

q3

extstart extconf

retstartretconf

Fig. 4. Functional model of the axis component

For other states:

ρTj (q, σ) = ρTc
j (q, σ) , ∀ρTc

j (q, σ)!

The only marking state of the task model is the initial state,
i.e. QT

m,j = {qT
0,j}.

Note that task models represent controlled behavior of the
component.

The model of the extension task for a bistable translational
joint realized by a linear motor is depicted by Fig. 3.
Task core events inΣTc = {mot:0,mot:1,pos ↑, neg ↓}
correspond to the stop of the motor, start of the motor to
the positive direction, rising edge of the position sensor at
positive extremal position and falling edge of the sensor at
the negative extremity, respectively. Task start and confirma-
tion events areextstart andextconf , respectively.

3) Integral model:Now a common model can be defined,
which comprises also the functional and the technological
representations. An intermediate step is to create a model
by the parallel composition of the task models and the
Technological model and check its controllability with re-
spect to the so-called Task Alternance Specification (TAS),
which captures the property that technological events can
only happen inside tasks (i.e. preceded by a task start event
and succeeded by a task confirmation event), which is true
if the model is well covered. It also allows the activity of
only one task of a component at the same time.

If GTech ‖j GT
j is controllable with respect toETAS =

L(GTAS), then the model is said to be well covered by
the tasks and the integral model can be defined as follows.
Otherwise, task models have to be redefined or new tasks
have to be included.

Definition 5: The integral model is the compositionGI =
GTech ‖j GT

j ‖ GTAS and is given by the 5-tupleGI =
{QI ,ΣI , ρI , qI

0
, QI

m}.
4) Functional model: The functional behavior of the

model can be described by tasks, depicting the operation
corresponding to a series of low-level events by two task
events. Therefore, the operation (respecting the specifications
of safety, security and liveliness)can be considered as starting
tasks and waiting for their completion. So the functional



model can be obtained as the projection of the integral model
to the task events.

Definition 6: The functional model is the generator of the
languageLF = PΣT (LI) and is given by the 5-tupleGF =
{QF ,ΣF , ρF , qF

0
, QF

m} whereΣF = ΣT .
The functional model of a bistable translational joint is

depicted by Fig. 4. Note that events of the model are start and
confirmation events of the extension and retraction (ext and
ret) tasks, and no events directly connected to the evolution
of IOs are present. This abstraction allows to use the same
functional model even if the physical component is replaced
by another one with different technological details. However,
in that case, the corresponding task models have to be
also replaced to handle the low-level technological behavior
described by the IO events.

Theorem 1:The language generated by the parallel com-
position of the functional model and the task models equals
the language generated by the integral model:
P−1

ΣTech∪ΣT (L
F ) ∩ (

⋂

j P
−1

ΣTech∪ΣT (L(G
T
j ))) = LI

Proof of the theorem can be found in [10].
It is straightforward that the language of the integral

model projected to the set of technological events is a subset
of the nominal model, i.e. according to the theorem, the
parallel composition of the functional model and the task
models respects the specifications of safety, security and
liveliness. This property suggests that the supervisory control
architecture of a component might be decomposed to the
set of task supervisors, which manipulate the IOs of the
component in order to meet the task models, and a functional
controller, which is responsible for the coordination of task
controllers. These supervisors, based on the technological
and functional models, can be synthesized using classical
methods of SCT. For details, the reader is referred to [11].

B. Abstract and concrete components

Since the basis of the approach is the use of components, at
first components have to be formally defined. Considering the
models of a component, one can easily relate the functional
model to the concept of interface as it describes the behavior
by the mean of task events, but does not defines the task
models themselves, i.e. it does not implements its methods
and therefore can not be instantiated. It is straightforward that
an abstract component can be related to a functional model,
such thatC∗ = GF . The abstract component is defined
formally as follows.

Definition 7: An abstract component is a 5-tupleC∗ =
(Q,Σ, ρ, q0, Qm), where the event set is composed of task
start and confirmation events, i.e.Σ = Σstart ∪ Σconf ,
Σstart ∩ Σconf = ∅.

While abstract components are related to interfaces, i.e.
abstract classes, components are analogous to concrete
classes, which can be directly instantiated. In the object-
oriented paradigm, the object’s behavior is realized by the
methods, which are invoked by sending appropriate messages
to an object. In the framework presented in this paper, parts
of a components behavior are represented by the tasks, which
can be related to methods.

According to the analogy of classes and components, a
component model should include all the task models it is
capable to realize. On the other hand, a component might
contain information about its physical representation, given
by the technological model. Also, to describe the admissible
behavior, the nominal model, or the specifications of safety,
security and liveliness should be included. Since the nominal
model can be easily derived from the specifications, only
the latter has to be stored. Although, since the operation of
computing the supremal controllable sublanguage might need
significant computational effort, it is practical to include also
its nominal model to the definition of a component.

Definition 8: A concrete component is given by a 4-
tuple C = (GTech, ES3L, HN , T ), where GTech is the
technological model of the component,ES3L describe the
specifications for safety, security and liveliness andHN is
the nominal model of the component. The setT contains the
task models associated to the component, i.e.T = {GT

j }.
Beside the concepts of concrete and abstract components,
also their relationship has to be specified. In the software
engineering field, it is said that a class implements an
interface if it has all the methods defined in the abstract
class. However, as defined above, the abstract component
contains not just the set of task events (i.e. the declaration
of methods), but also the functional model, i.e. in which
order these events might follow each other. Therefore, the
definition of implementation is more restrictive than in the
field of software engineering.

Definition 9: An abstract componentC∗ is implemented
by a concrete componentC = (GTech, ES3L, HN , T ) if
PΣTech(L(C∗) ‖i L(GT

i ) : Ti ∈ T ) is controllable with
respect toL(HN ), whereΣTech is the event set ofGTech.

C. Composition

Object composition is a method to combine simple objects
into more complex ones. Unlike subtyping or inheritance,
which define anis-a relationship, composition expresses that
a composite object (or component) is built up from simpler
ones, i.e. ithas objects (components) as its parts. In order
to be unambiguous, the term atomic component will be used
in the sequel for components not composed of other ones.

Unlike atomic components, composed components are not
obtained as a result of modeling a physical component, but
are assembled from previously defined component models,
which will be referred to as its subcomponents in the sequel.
Since the aim is to allow reusability and modularity as far
as possible, composed components should be based on the
composition of abstract subcomponents.

The behavior of a composed component is usually more
restricted than the behavior of its subcomponents operating
independently. If the working space of two robotic arms are
disjoints, there is no need to specify constraints on their nom-
inal behavior. However, when these two arms are situated as
depicted by Fig. 1, only one of the robots can operate with
its axis X extended in order to avoid collision. Therefore,
beside the subcomponents, a specification describing their
joint admissible behavior should be included in the composed



component. In order to allow further abstraction, tasks might
be defined for the admissible behavior. The formal definition
of the composed component is given as follows.

Definition 10: The composed component is a 4-tupleC =
(C,Ecoord, H, T ), whereC = {C∗

1
, . . . , C∗

n} is a set of ab-
stract subcomponents,Ecoord is the specification describing
how abstract models inC are allowed to interact, whileH is
the minimal generator of the largest controllable sublanguage
of Ecoord with respect to‖i C∗

i : C∗

i ∈ C. T is the set of
task models associated to the composed component.

In order to be coherent with the definitions of the previous
sections based on atomic components, the set of underlying
componentC can be replaced by the automatonGTech =‖i
C∗

i ,∈ C, so the composed component can be described
by the 4-tupleC = (GTech, Ecoord, H, T ), where C =
{C∗

1
, . . . , C∗

n}.
There is no difference between the definition of implemen-
tation in case of atomic and composed components, i.e. a
composed componentC is said to implement an abstract
componentC∗ if PN

Σ
(C∗ ‖i L(Ti) : Ti ∈ T ) is controllable

with respect toL(HN ), whereΣN is the event set ofHN .
However, if one investigates the modelHN , it is clear
that its event set is the union (or a subset of the union)
of events inC, which is a set of abstract components.
Therefore, technological events in the composed components
modelHN correspond not to physical IOs, but task events
of abstract subcomponents. As a consequence, tasks of the
composed component will realize the desired behavior by
invoking tasks of the subcomponents in the adequate order.
For example, event set of composed component 2-DOF arm
contains task events of abstract joints and an abstract gripper.

The operation of composition is naturally recursive, so
subcomponents might also be composed ones. Composition
allows control engineers to model complex systems using
a top-down methodology, just like in the field of software
engineering. Regarding the example of the manufacturing
cell, it is straightforward that the system can be decomposed
to two components, namely the two pick-and-place arms.
According to the actual configuration, these abstract compo-
nents are now realized by a concrete component consisting of
two translational joints and a gripper. Subcomponents of the
arm component, i.e. joints and the gripper are also abstract
ones. These components can not be further decomposed (or
they are not needed to be further decomposed), so these
components are considered as atomic ones. Following this
procedure, the component tree of Fig. 5. can be constructed.

The procedure of implementation follows a bottom-up
methodology. At first the atomic concrete components im-
plementing the abstract ones are selected and the controllers
for their tasks are synthesized. Then, following the edges of
the component tree, controllers for the tasks of composed
components are obtained. This methodology allows various
implementations for the supervisory control system.

IV. FEATURES

In [12] the author has studied the terms used in OOP-
related references and collected the ones mentioned the most.

Cell

Arm A Arm B

Axis X Axis Z Grip Axis X Axis Z Grip

Fig. 5. Component tree of the cell

Besides the fundamental concepts of objects, classes and
methods, the features mostly associated to the object-oriented
paradigm areencapsulation, inheritanceandpolymorphism.

A. Encapsulation and local responsibility

According to the definition, encapsulation is a technique
for designing classes and objects that restricts access to the
data and behavior by defining a limited set of messages that
an object of that class can receive. The aim of encapsulation
is to keep the information and the way it is processed strictly
together, and separate them from other objects of the system.

This is exactly what the framework using tasks provides.
Events of concrete components are divided into two disjoint
sets, namely the set of technological events, corresponding
to the events of IOs (or tasks of subcomponents) and the set
of task events. Composition of objects and control synthesis
is carried out on abstract components, which contain only
the signatures (i.e. the start and configuration events) of
the tasks. Therefore, other components, even those which
are composed of the given component, might influence the
behavior of the given component by task start events, which
can be related to messages invoking a given method. For
example, the start event of the ’Retract axis Z’ task of the
composed component Arm A can be considered as a message
sent towards the axis component, requesting its retraction.
After finishing this operation, the axis sends a reply message
to Arm A in the form of the task confirmation event. Other
events, or the actual state of the IOs are unknown for the
arm component and also for its supervisor.

Another important concept is local responsibility. Each
component has its own scope of responsibility within it can
act, i.e. it can only enable or disable controllable events
included in its task models. Moreover, components might
only gain information directly from their environment only
by the events included in their task models. It means that
IOs of a given component can not be set or read by other
components. However this feature might seem restrictive at
first sight, it ensures safety and security as responsibility for
ensuring the correct behavior is delegated to the component,
e.g. the details of the operation of the joints has not to be
considered when designing a controller for the arm.

B. Inheritance

In object-oriented software design, inheritance is a mech-
anism that allows the data and behavior of one class to be
included in or used as the basis for another class. In the
proposed approach, a significant distinction has been made



between abstract and concrete components, so the concept
of inheritance should be defined within and between them.

Inheritance between an abstract and a concrete component
is given by the property of implementation, when the given
concrete component implements all the tasks of which the
signatures were given in the abstract component. An abstract
component can be thought of as an abstract class with virtual
methods, and its methods are overridden by the methods
(i.e. tasks) of the concrete component. Note that multiple
inheritance is supported by the framework, as a concrete
component can implement the behavior of various abstract
ones, e.g. a linear motor can either realize a bistable actuator
or one which can be stabilized in any position. However,
generally these behaviors can not be implemented simulta-
neously, so even a concrete component inherits behaviors
from multiple abstract ones, it has to be selected which of
them it will implement in the actual system.

Between abstract components, inheritance affects only the
abstract behavior which they define, so an abstract compo-
nent can be considered the child of an other if it describes
at least the same behavior.

Definition 11: An abstract componentC∗

1
is a descendant

of the abstract componentC∗

2
(resp.C∗

2
is an ancestor ofC∗

1

if L(C∗

2
) ⊆ L(C∗

1
).

In case of concrete components, inheritance concerns not
only abstract behavior, but also its implementation, so a
concrete component is considered to be the child of an other
one if it implements the same tasks in the same way.

Definition 12: A componentC1 is a descendant of the
componentC2 (resp.C2 is an ancestor ofC1), if T2 ⊆ T1 and
L(HN

1
) : HN

1
∈ C1 is controllable with respect toL(HN

2
) :

HN
2

∈ C2.
Note that the inheritance between two concrete components
is a strict relation. It is possible that a concrete component
can implement the same abstract behavior as an other con-
crete one, however, it is not the descendant of the other since
it implements the behavior in a different way. For example,
a linear drive can implement the behavior of a monostable
pneumatic cylinder, however, since the operation of the linear
drive and therefore its IOs are different, it is not a descendant
of the pneumatic cylinder.

C. Polymorphism and substitutability

Polymorphism is another key feature of the object oriented
paradigm. It is the ability of different classes to respond
the same message and implement the method appropriately.
Analogously, an abstract component is polymorphic if there
exists more than one concrete component implementing it.
Note that, according to the definition of implementation, the
concrete component needs to have not only the correspond-
ing task models, but also has to be able to execute the tasks
in the order specified by the abstract component.

If two concrete components implement the same abstract
component, they can be substituted with each other, since
they show the same interface (by the mean of their task
events) to other components. When using the traditional
approach of supervisory control, even a slight technological

modification (e.g. replacing a hydraulic cylinder by a linear
motor) needs the remodeling of the whole system, and
therefore the resynthesis of the supervisor. The property of
substitutability provides that if one component of the system
is changed, only the model of the given part has to be
constructed, and therefore only the part of the controller
corresponding to the changed component has to be newly
synthesized (e.g. only the task supervisors implementing the
behavior of the axis component has to be changed, other
parts of the control system remain the same).

V. CONCLUSION

The presented framework allows the use of several princi-
ples of object-oriented software design in the framework of
Supervisory Control Theory. The use of components provide
a modular development method supporting reusability while
allowing the control engineer to take advantage of concepts
like inheritance or polymorphism.

Future work includes the definition of a component li-
brary enforcing the reuse of components and the definition
of supervisory control architecture based on the presented
framework.

ACKNOWLEDGMENT

Research presented in this paper was partially funded
by the Hungarian National Scientific Research Foundation
grant OTKA K71762. Also, it is connected to the scientific
program of the ”Development of quality-oriented and harmo-
nized R+D+I strategy and functional model at BME” project,
supported by the New Hungary Development Plan (Project
ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

REFERENCES

[1] C. Cassandras and S. Lafortune,Introduction to Discrete Event Sys-
tems. Boston: Kluwer Academic Publishers, 2000.

[2] V. Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed
Control Systems Design. Instrumentation, Systems and Automation
Society, 2007.

[3] M. A. Shayman and R. Kumar, “Process objects/masked composition:
an object-oriented approach for modeling and control of discrete-event
systems,” vol. 44, no. 10, pp. 1864–1869, 1999.

[4] M. Fabian and B. Lennartson, “Petri nets and control synthesis: An
object-oriented approach,” inIn Proceedings of the I.M.S, 1994, pp.
13–15.

[5] P. Ramadge and W. Wonham, “The control of discrete event systems,”
Proceedings of the IEEE, vol. 77, no. 1, pp. 81 –98, jan 1989.

[6] W. Wonham,Notes on Control of Discrete Event Systems. Toronto:
University of Toronto, 2002.

[7] J. Hopcroft and J. Ulmann,Introduction to Automata Theory, Lan-
guages and Computation. Addison Wesley, 1979.

[8] R. Kumar, V. Garg, and S. Marcus, “On controllability and normality
of discrete event systems,”Systems & Control Letters, vol. 17, pp.
157–168, 1991.

[9] R. Brandt, V. Garg, R. Kumar, F. Lin, S. Marcus, and W. Wonham,
“Formulas for calculating supremal controllable and normal sublan-
guages,”System & Control Letters, vol. 15, pp. 157–168, 1990.

[10] G. Kovács and L. Píetrac, “Multi-face modeling for rapid prototyping
of discrete event control systems,” inProc. European Control Confer-
ence 2009, 2009.

[11] G. Kovács, L. Píetrac, and E. Niel, “Supervisory control based
on multi-face modelling of discrete event systems,” inProc. 10th
International Workshop on Discrete Event Systems, 2010.

[12] D. J. Armstrong, “The quarks of object-oriented development,”
Commun. ACM, vol. 49, pp. 123–128, February 2006. [Online].
Available: http://doi.acm.org/10.1145/1113034.1113040


