A Component-Based Approach for Supervisory Control

Gabor Kowacs Laurent Petrac Kiss Balint
Dept. Control Engineering and Laboratoire Amgre Dept. Control Engineering and
Information Technology INSA Lyon Information Technology
Budapest University of Villurbanne, France Budapest University of
Technology and Economics Email: laurent.pietrac@insa-lyon.fr Technology and Economics
Budapest, Hungary Budapest, Hungary
Email: gkovacs@iit.ome.hu Email: bkiss@iit.bme.hu

Abstract— This paper reports a novel approach for the super- the gap between the two fields by proposing a component
visory control of discrete event systems. Based on components pased methodology for supervisory control design.
the approach provides principles of object-oriented software The remaining part of this paper is organized as follows.

design to be used in the framework of Supervisory Control
Theory. The concepts of abstract and concrete components Section Il summarizes briefly the basic concepts and nota-

allow the modeling of complex systems at a high level of abstrac- tions of SCT. Section Il introduces components, building
tion, making specification and control design easier. Besides blocks of the approach, while section IV presents some

aiming modularity and reusability, the proposed framework concepts supported by the framework. Section V concludes
allows to introduce concepts of composition, polymorphism and the paper.

inheritance into the design of supervisory controllers.
II. PRELIMINARIES

Here only some fundamental principles and notations of
In the last decades, evolving complexity of industrial andCT [5] and automata theory are presented in order to keep
commercial systems have raised the need for formal methotde paper as self-contained as possible. For further detail
to ensure safe operation without extensive use of validatidhe reader may refer to [6] and [7].
and verification. To answer these needs, Supervisory Contro The discrete-event systet is described by the 5-tuple
Theory (SCT) has been proposed, which guarantees that the= (Q“, 2%, p%, ¢f, Q%) with Q¢ as its state set;” as
closed loop behavior will meet the prescribed specificationits event setp® : Q¢ x X¢* — Q¢ as its extended partial
On the other hand, SCT uses ordinary state machines féansition functiong§’ as its initial state and)$, as the set
modeling, which makes the procedure of control synthesR its marking states. The event sét' can be divided into
cumbersome. Although state machines are well formalizethe distinct sets of controllable and uncontrollable esesut
the size of their state space rises drastically with the conthat ¢ = %& U £f wherexg N XF = (. The notation
p|exity of the System modeled, posing a d|ff|cu|ty also fag th p(q7 O')' means that there exists a transition associated with
control engineer responsible for modeling and specificatiothe events € X¢ leaving the statg € Q°.
and also for numerical computation of the supervisor. To The language generated Iy is denoted byL(G). The
overcome this problem, different hierarchic and modulaprefix closure of a languageis denoted by.. An important
approaches for supervisory control has been proposed (segeration on languages is the natural projection to a given
for example, [1] and references within). However thes@lphabets, defined by the followings:

I. INTRODUCTION

approaches answer many of the arising problems, theresexist _
. .- . . PE (E) = £
no unified framework providing modularity and reusability, it 5
the two features mostly desired by control engineers. Py(o) = { g otr?efwise
In the domain of software development, the object- c
oriented paradigm has quickly become a widely used solution Py(ot) = Ps(o).Ps(t)

for these problems. The object-oriented paradigm proposedThe inverse projection is defined by, *(s) = {t € X |
features like polymorphism or inheritance, which might bePs(t) = s} and can be also extended to languages. The ex-
used also in control design, and are adopted by variowgnsion of these projections to languages is straightfimwa
approaches, e.g. by the standard IEC 61499 [2]. However, The synchronous composition of two DE&S and Gs
these principles have to be adapted such that they meet thescribes the operation of a system in whighand G, op-
formalism of SCT. Although propositions have been maderates synchronously. The synchronous product operation o
to include object-oriented paradigms in the framework ofwo DESs is defined by.(G, || G2) = PZ’élUEGQ (L(G1))N
supervisory control (see [3] or [4]), no unified approachPZ‘éluzcz (L(G2)).

exists to take advantage of object-oriented principleshint The goal of supervisor synthesis is to define a supervisor
field of control design. In this paper, the author tries talpei which can restrict the operation of the system to meet the

constraints of the specifications, modeled by a DESThe Considering the emphasized features, one can relate the
supervisorS is a functionS : L(G) — T defined by notion of object to the concept of component, of which the
I' = {y = PWR(X) | ¥ 2 Xy} where~ represents system is built from. In case of a robotic arm, one would
the set of events authorized Iy and PW R(Y) is the set choose the gripper and the two joints as components. These
of all subsets (the power set) ai. If the specifications components can be uniquely identified (i.e. gripper, axis X
are controllable, the automatadH = S/G describing the and axis Z), and their behavior, information on their in&rn
supervised system is the product 6f and E. In other structure in the form of possible evolution of their I0s and
cases the supremal controllable sublanguage (or maxintheir states are stored in the corresponding FSM-models.
permissive sublanguage) @& can be found, which allows Here another concept, namely the one of classes is recalled,
the greatest possible set of controllable events, see [8] awhich is a description of the organization and actions share
[9]. This sublanguage allows only those operations desdrib by one or more similar objects. Since the two joints are

by L(G) which respects the constraints given By identical, one might consider the class Axis, and the object
Axis X and Axis Z as its instances. In the followings, the
I1I. A COMPONENTBASED APPROACH term component will be used in the meaning of class.

In order to achieve modularity and reusability, the firspste
In order to illustrate the principles presented in this papejs to separate the behavior (i.e. abstract functionality) a
a simple running example of a manufacturing cell depictefnplementation of classes. In the object-oriented paradig
by Fig. 1 will be used in the followings. The system isjt can be achieved by defining an abstract class, the in&rfac
composed of two 2-DOF pick and place arms, each onghich contains only the declaration of the methods, and
consisting of two translational joints and a gripper. therefore describes a behavior in an abstract manner. Based
Development of a controller based on the methodologyn abstract interfaces, classes can be defined, implergentin
of SCT needs a model of the plant, describing the possibtae methods. However, in the field of control engineering,
evolution of its IOs, and therefore resulting in a largeone has to deal not with abstract constructs, but well defined
state space. The classical way to overcome this problepmysically existing components, so the basis of modeling
is to decompose the system to subsystems, and then cregtieuld be the physical manifestation of the component.
models for these subsystems independently, which can thenThe aim is to, based on a traditional discrete-event 10
be composed by the operation of synchronous composhodel, obtain an appropriate functional model, descriltiiieg
tion. This naive approach of modularity might simplify thepehavior of the component at a higher level of abstraction.
modeling process, however, the specifications have to e complete procedure of passing from a model to an other
given for the global model, using events corresponding tg given in [10], here only the most important definitionslwil
IOs of subsystems. Even if specifications are composed pé given and the modeling procedure, summarized by Fig.
sub-specifications, the problem of large state spacessarise will be briefly presented.
during the synthesis of the controller. For this simple syst
such a monolithical model contains nearly 4 000 stateg \odels of a component
The component-based methodology described in the sequel
helps avoiding the problem of state explosion and provides Definition 1: The technological model represents all pos-
a solution for reusing models and using different level§ible evolution of inputs and outputs of the component
of abstraction, allowing easy modification of the contmolle Which are allowed by its physical manifestation. Formally,
if one of the parts is replaced by another with differenthe technological model is given by the 5-tuple " =
technological details but with same functionnality (e.g. 4Q@" ", X7, pTe" g5 *", Q™).
hydraulic cylinder is replaced by an electrical linear djiv 1) Nominal model: In practice there are requirements
The key concept of the object oriented paradigm is thwhich shall be respected no matter what functionality the
object itself, so at first its definition should be studiedgiven component should realize. They represent the avoid-
According to the common definition, the object is a part oftnce of operations which are physically possible, and there

the system which can heniquely identifiecand is described fore allowed by the technological model, but which cause
by its behaviorwith regard to its environment, itsternal instable or dangerous behavior of the component. For exam-

structureand itsstate ple, a linear axis should not be started towards the negative
direction if it is at the negative extremity. These spectfass
TZ_) Arm A Arm B are referred to as Specifications of Safety, Security and
X Liveliness (S3L) which is given by the languag#>".

Since the aforementioned specifications need to be re-
spected, a suitable nominal model can be obtained as the
generator of the supervised plant respecti@P”, i.e. the
minimal generator of the supremal controllable language of

B | — | (B U whesecae |

Definition 2: The nominal model defines the most permis-

Fig. 1. Layout of the example sive operation of the process respecting the specificatibns

| Technological model |

)
O &
| Nominal model |

¥
| Task Model 1 Fig. 3. Model of the extension task

| Task Model n @

| Integral Model |

| Functional Model | Fig. 4. Functional model of the axis component

emtsf,a,'r‘t

OFO-O-DHD

»Tec cxtconf

caxtconf

7‘etsta.rt

Fig. 2. Models of a component
For other states:

T Tc Tc
safety, security and liveliness and is given by the 5-tuple pj(a,0) = p;(g:0) , Vp; (g, 0)!

HYN = (QN, 5N, oV, af', Q)
oo o H0 m) The only marking state of the task model is the initial state,
2) Tasks: The resulting nominal model depicts only op-; o o7 = _ {ad}
e m,j VR

i S3L >
eratlo_n .Of the f:omponent.allowed by ..However, the Note that task models represent controlled behavior of the
description is given in details, by technological eventsthe component

r?om'”a' model is an ideal candidate to bwlc_;l an abstracfc—func The model of the extension task for a bistable translational
tional model on. The way from technological to functional

. . . -joint realized by a linear motor is depicted by Fig. 3.
representations is paved by the tasks, gathering appreprhlzl.ask core even)t/s ieTe — {mot:0 mot'fpos 4 nig E}
event sequences of the nominal model. S .

o)) correspond to the stop of the motor, start of the motor to
Definition 3: The task core model is a suitably selecteqng positive direction, rising edge of the position sengor a
part of ;he techr%olog}cal ;nodTeI aan IS descrlbe.(i by the 35ositive extremal position and falling edge of the sensor at
tuple G7° = (Q7 % %7 pj 40§, Qn;) for the j™ task. the negative extremity, respectively. Task start and corfir
!ts state and event sets are subse@s of thg .nommal .modtr?(g,n events arext*t and ezt respectively.
.€. Qéjpc c Q" and ch c x%, and its transition function . 3) Integral model:Now a common model can be defined,
is defined such that the task core model generates a pref ich comprises also the functional and the technological

e"ef“ Seq“e”‘;’f as the nominal model starting from its Sta]’t(,gpresentations. An intermediate step is to create a model
equivalent tquJ o by the parallel composition of the task models and the
Before giving the definition of the task, two new eventsrgchnological model and check its controllability with re-
shall be mtyoduced. The first one, correspo_ndmg to the Sta_{pect to the so-called Task Alternance Specification (TAS),
of a task, is the controllablstart eventand is denoted by \hich captures the property that technological events can
o3'e"". The other, reporting the completion of a task, is theynly happen inside tasks (i.e. preceded by a task start event

uncontrollableconfirmation evenand is denoted by /. and succeeded by a task confirmation event), which is true
These events are collected to the alphabet of task eveftshe model is well covered. It also allows the activity of
ST = {ostart, o5}, only one task of a component at the same time.

Definition 4: A task is given by the 5-tupleG] = If GTeh ||; GT is controllable with respect t&” 45 =

(QT, T, pT ¢l ;, QL ;). The state set of the task coreL(G”“9), then the model is said to be well covered by

model is extended by a new initial state, @77" = q({quTc, the tasks and the integral model can be defined as follows.
and the event set of the task is the union of the event s@therwise, task models have to be redefined or new tasks
of the corresponding task core model and the task eventsave to be included.

T =xTcu {ajt‘”t,ajonf}. The initial state of the task Definition 5: The integral model is the compositi@® =
model is defined to be the newly added state,dig. = q;. G™°" ||; GT || GT49 and is given by the 5-tupl&’ =

The transition function is defined as follows: {1, 21 p! ¢t, QL }.
4) Functional model: The functional behavior of the
p}“(qg:j’o_start) _ qgg model can_be describe_d by tasks, depicting the operation
T(T — J. v yTe corresponding to a series of low-level events by two task
pj (q0,5,0) = qqj, Yo € . . .
events. Therefore, the operation (respecting the spetadinsa
T conf _ T Tc
p;j (a 0,) = o 4€ Qi of safety, security and liveliness)can be considered askreja

tasks and waiting for their completion. So the functional

model can be obtained as the projection of the integral model According to the analogy of classes and components, a

to the task events. component model should include all the task models it is
Definition 6: The functional model is the generator of thecapable to realize. On the other hand, a component might

languageL’ = Psr(L') and is given by the 5-tupl&f = contain information about its physical representationegi

{QF,2F pF ¢, QL } whereXt” = 7T, by the technological model. Also, to describe the admissibl

The functional model of a bistable translational joint isbehavior, the nominal model, or the specifications of safety
depicted by Fig. 4. Note that events of the model are start asécurity and liveliness should be included. Since the namin
confirmation events of the extension and retractiext &and model can be easily derived from the specifications, only
ret) tasks, and no events directly connected to the evolutidhe latter has to be stored. Although, since the operation of
of IOs are present. This abstraction allows to use the samemputing the supremal controllable sublanguage mighd nee
functional model even if the physical component is replacesignificant computational effort, it is practical to includlso
by another one with different technological details. Hoarev its nominal model to the definition of a component.
in that case, the corresponding task models have to beDefinition 8: A concrete component is given by a 4-
also replaced to handle the low-level technological beravituple C = (G7¢" ES3L HN T), where GT*°" is the
described by the 10 events. technological model of the componerE, 3! describe the

Theorem 1:The language generated by the parallel comspecifications for safety, security and liveliness d#d is
position of the functional model and the task models equathe nominal model of the component. The $etontains the

the language generated by the integral model: task models associated to the component,Ti.e- {Gf}.
Poteenisr (LF) N (N Poteenygr (L(GT))) = L Beside the concepts of concrete and abstract components,
Proof of the theorem can be found in [10]. also their relationship has to be specified. In the software

It is straightforward that the language of the integrakngineering field, it is said that a class implements an
model projected to the set of technological events is a subseterface if it has all the methods defined in the abstract
of the nominal model, i.e. according to the theorem, thelass. However, as defined above, the abstract component
parallel composition of the functional model and the taskontains not just the set of task events (i.e. the declaratio
models respects the specifications of safety, security aofl methods), but also the functional model, i.e. in which
liveliness. This property suggests that the supervisonyrob order these events might follow each other. Therefore, the
architecture of a component might be decomposed to thiefinition of implementation is more restrictive than in the
set of task supervisors, which manipulate the 10s of thield of software engineering.
component in order to meet the task models, and a functional Definition 9: An abstract componer@* is implemented
controller, which is responsible for the coordination afka by a concrete componer® = (GTeh, ES3L gN T) if
controllers. These supervisors, based on the technologida;r... (L(C*) |; L(GT) : T, € T) is controllable with
and functional models, can be synthesized using classigaispect toL(H"), wherex7¢" is the event set of; 7",
methods of SCT. For details, the reader is referred to [11]. .

C. Composition
B. Abstract and concrete components Object composition is a method to combine simple objects

Since the basis of the approach is the use of componentsjrb more complex ones. Unlike subtyping or inheritance,
first components have to be formally defined. Considering thehich define ans-a relationship, composition expresses that
models of a component, one can easily relate the functionalcomposite object (or component) is built up from simpler
model to the concept of interface as it describes the behaviones, i.e. ithas objects (components) as its parts. In order
by the mean of task events, but does not defines the takbe unambiguous, the term atomic component will be used
models themselves, i.e. it does not implements its methods the sequel for components not composed of other ones.
and therefore can not be instantiated. It is straightfodvtiaat Unlike atomic components, composed components are not
an abstract component can be related to a functional modebtained as a result of modeling a physical component, but
such thatC* = GF. The abstract component is definedare assembled from previously defined component models,
formally as follows. which will be referred to as its subcomponents in the sequel.

Definition 7: An abstract component is a 5-tuplé* = Since the aim is to allow reusability and modularity as far
(@, %, p,q0,Qm), Where the event set is composed of taslas possible, composed components should be based on the
start and confirmation events, i.& = Xstert Uy xeonf composition of abstract subcomponents.
ystart o yeonf — (), The behavior of a composed component is usually more

While abstract components are related to interfaces, i.eestricted than the behavior of its subcomponents operatin
abstract classes, components are analogous to concretependently. If the working space of two robotic arms are
classes, which can be directly instantiated. In the objectlisjoints, there is no need to specify constraints on thain-n
oriented paradigm, the object’s behavior is realized by thimal behavior. However, when these two arms are situated as
methods, which are invoked by sending appropriate messagtpicted by Fig. 1, only one of the robots can operate with
to an object. In the framework presented in this paper, parits axis X extended in order to avoid collision. Therefore,
of a components behavior are represented by the tasks, whindside the subcomponents, a specification describing their
can be related to methods. joint admissible behavior should be included in the comgose

component. In order to allow further abstraction, taskshnig
be defined for the admissible behavior. The formal definition

of the composed component is given as follows.
Definition 10: The composed component is a 4-tuple=

(C, E°°™d H, T), whereC = {C},...,C*} is a set of ab- |Axis x| |Axis z| | Grip | |Axis x| |Axis z| | Grip |

stract subcomponentg;<>°"¢ is the specification describing

how abstract models i@ are allowed to interact, whiléf is Fig. 5. Component tree of the cell

the minimal generator of the largest controllable sublaggu
of Ecoord with respect to||; C; : Cf € C. T is the set of

K3

task models associated to the composed component. Besides the fundamental concepts of objects, classes and
In order to be coherent with the definitions of the previougnethods, the features mostly associated to the objeattede

sections based on atomic components, the set of underlyipgradigm areencapsulation, inheritancand polymorphism

componentC can be replaced by the automat@i*” =||;

Cy,e C, so the composed component can be describgd Encapsulation and local responsibility

_ O — Tech coord —
?é*the 46'55]?Ie0 (@ B H,T), where C According to the definition, encapsulation is a technique
Lowe o™ _— . for designing classes and objects that restricts accedw®to t
There is no difference between the definition of implemen-,) - -
S : . data and behavior by defining a limited set of messages that
tation in case of atomic and composed components, i.e._a

. . X an object of that class can receive. The aim of encapsulation
composed component' is said to implement an abstract.

componentC* it PY(C* | L(T,) : T, € T) is controllable is to keep the information and the way it is processed syrictl
with respect toL(h?N) whlereZlN ‘iszthe event set off NV together, and separate them from other objects of the system
However. if one inve,stigates the modél™N it is clea.r This is exactly what the framework using tasks provides.
that its évent set is the union (or a subsét of the uni0|,§vents of concrete components are divided into two disjoint

of events inC, which is a set of abstract components. ets, namely the set of technological events, correspgndin

. . the events of 10s (or tasks of subcomponents) and the set
Therefore, technological events in the composed compsnerlﬁ; task events Comp()osition of objects agd contr)ol synthesi

model HY correspond not to physical 10s, but task eventd .) .

of abstract subcomponents. As a consequence, tasks of ecar_ned out on abstract components,_whmh contain only
composed component will realize the desired behavior b € signatures (i.e. the start and configuration events) .Of
invoking tasks of the subcomponents in the adequate ord N tasks. Therefore, qther components, even those which
For example, event set of composed component 2-DOF a c cqmposed Of. the given component, might influence Fhe
contains task events of abstract joints and an abstragiarip behavior of the given component by task start events, which

The operation of composition is naturally recursive, sg2n be related to messages invoking a given method. For

subcomponents might also be composed ones. Compositi%;ﬁ;mglsee’ dtr;?)msug:\:r\:te:trn?fpfh;nFf)?at::icr:s?(;(ésrei e:zkn?:;stgz o
allows control engineers to model complex systems usin P P 9

a top-down methodology, just like in the field of software Aftr:r ;?:::g:g}s ttutias 2X'Zr§g$p?;]:r;t)’(i;esqeunedsst";gre'tsl rigﬁ:n
engineering. Regarding the example of the manufacturi 9 b ' Ply 9

s . r}% Arm A in the form of the task confirmation event. Other
cell, it is straightforward that the system can be decormbosevents’ or the actual state of the 10s are unknown for the

to two components, namely the two pick-and-place armg.rm component and also for its SUDENVisor
According to the actual configuration, these abstract ccampSl po! > Sup ' .
1Another important concept is local responsibility. Each

nents are now realized by a concrete component consisting o _ o T
two translational joints and a gripper. Subcomponents ef g-omponent has its own scope of .respon3|b|l|ty within it can
arm component, i.e. joints and the gripper are also abstra%?t’ I-€. '.t can only enable or disable controllable evgnts
ones. These components can not be further decomposedI udeq in Its ta;k quels. Moreo"ef' components might
they are not needed to be further decomposed), so th y gain mformaﬂon dlr_ectly from their environment only
components are considered as atomic ones. Following tf% the eve_nts included in their task models. It means that
procedure, the component tree of Fig. 5. can be construct S of a given componer_lt can not b.e set or read py .other
The procedure of implementation follows a bottom_quomp.onen.ts. However this feature m|.ght seem rest_n(_:tllve at
methodology. At first the atomic concrete components imirst S'.ght’ It ensures safety. anq security as responsidit
plementing the abstract ones are selected and the corgroll&MSU"NY the _correct behaV|or_|s delegate_zd_ o the comppnent
for their tasks are synthesized. Then, following the eddes &9 Fhe details of the_ operat|0n of the joints has not to be
the component tree, controllers for the tasks of composé:&ms'dered when designing a controller for the arm.
components are obtained. This methodology allows variOLg, Inheri
implementations for the supervisory control system. - Inheritance

In object-oriented software design, inheritance is a mech-
anism that allows the data and behavior of one class to be

In [12] the author has studied the terms used in OORRAcluded in or used as the basis for another class. In the
related references and collected the ones mentioned the mgsoposed approach, a significant distinction has been made

IV. FEATURES

between abstract and concrete components, so the concewtdification (e.g. replacing a hydraulic cylinder by a linea
of inheritance should be defined within and between themmotor) needs the remodeling of the whole system, and
Inheritance between an abstract and a concrete componérgrefore the resynthesis of the supervisor. The propdrty o
is given by the property of implementation, when the giversubstitutability provides that if one component of the sgst
concrete component implements all the tasks of which the changed, only the model of the given part has to be
signatures were given in the abstract component. An abbstraonstructed, and therefore only the part of the controller
component can be thought of as an abstract class with virtuadrresponding to the changed component has to be newly
methods, and its methods are overridden by the methodgnthesized (e.g. only the task supervisors implementiag t
(i.e. tasks) of the concrete component. Note that multiplbehavior of the axis component has to be changed, other
inheritance is supported by the framework, as a concreparts of the control system remain the same).
component can implement the behavior of various abstract
ones, e.g. a linear motor can either realize a bistable fctua
or one which can be stabilized in any position_ However, The presented framework allows the use of several prinCi—
generally these behaviors can not be implemented simultales of object-oriented software design in the framework of
neously, so even a concrete component inherits behaviopgpervisory Control Theory. The use of components provide
from multiple abstract ones, it has to be selected which ¢ modular development method supporting reusability while
them it will implement in the actual system. allowing the control engineer to take advantage of concepts
Between abstract components, inheritance affects only thle inheritance or polymorphism.
abstract behavior which they define, so an abstract compo-Future work includes the definition of a component li-
nent can be considered the child of an other if it describdyyary enforcing the reuse of components and the definition
at least the same behavior. of supervisory control architecture based on the presented
Definition 11: An abstract componert; is a descendant framework.
pf the abstract component; (resp.C; is an ancestor of’; ACKNOWLEDGMENT
it L(C3) € L(CY).

In case of concrete components, inheritance concerns OtResearch pr.esenteq n th's. pa_p_er was partially funt;led
only abstract behavior, but also its implementation, so y the Hungarian National Scientific Research Foundation

concrete component is considered to be the child of an oth@fant OTKA K7,,1762' Also, it is conr_lecte_d to the scientific
one if it implements the same tasks in the same way. program of the "Development OT quality-oriented and ha_rmo-
Definition 12: A componentC; is a descendant of the nized R+D+l strategy and functional model at BME” project,
; ; ted by the New Hungary Development Plan (Project
component’; (resp.Cs is an ancestor af'), if 7, C 737 and S”_ppof
L(HYN) : HN € ¢y is controllable with respect t&(HY) : ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002).

Hév e (Cs.

Note that the inheritance between two concrete componenE]
is a strict relation. It is possible that a concrete compbnen
can implement the same abstract behavior as an other cot#l
crete one, however, it is not the descendant of the othee sinc

V. CONCLUSION

REFERENCES

C. Cassandras and S. Laforturieroduction to Discrete Event Sys-
tems Boston: Kluwer Academic Publishers, 2000.

V. Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed
Control Systems Design Instrumentation, Systems and Automation
Society, 2007.

it implements the behavior in a different way. For example,[3]
a linear drive can implement the behavior of a monostable
pneumatic cylinder, however, since the operation of thedin 4]
drive and therefore its 10s are different, it is not a desesnd

of the pneumatic cylinder. 5
C. Polymorphism and substitutability 6]

Polymorphism is another key feature of the object oriented
paradigm. It is the ability of different classes to respondl’]
the same message and implement the method appropriatey;
Analogously, an abstract component is polymorphic if there
exists more than one concrete component implementing “[9]
Note that, according to the definition of implementatiorg th
concrete component needs to have not only the correspond-
ing task models, but also has to be able to execute the taskd
in the order specified by the abstract component.

If two concrete components implement the same abstraigt]
component, they can be substituted with each other, since
they show the same interface (by the mean of their tasgky)
events) to other components. When using the traditional
approach of supervisory control, even a slight technokigic

M. A. Shayman and R. Kumar, “Process objects/masked conipasit
an object-oriented approach for modeling and control ofrdiscevent
systems,” vol. 44, no. 10, pp. 1864-1869, 1999.

M. Fabian and B. Lennartson, “Petri nets and control Bgsis: An
object-oriented approach,” im Proceedings of the 1.M,S1994, pp.
13-15.

P. Ramadge and W. Wonham, “The control of discrete everieBys”
Proceedings of the IEEE/ol. 77, no. 1, pp. 81 —-98, jan 1989.

W. Wonham,Notes on Control of Discrete Event System$oronto:
University of Toronto, 2002.

J. Hopcroft and J. Ulmannintroduction to Automata Theory, Lan-
guages and Computation Addison Wesley, 1979.

R. Kumar, V. Garg, and S. Marcus, “On controllability andrmality
of discrete event systems3ystems & Control Lettersiol. 17, pp.
157-168, 1991.

R. Brandt, V. Garg, R. Kumar, F. Lin, S. Marcus, and W. Wamha
“Formulas for calculating supremal controllable and normddlamo-
guages,’System & Control Lettersvol. 15, pp. 157-168, 1990.

G. Kovacs and L. Ritrac, “Multi-face modeling for rapid prototyping
of discrete event control systems,” froc. European Control Confer-
ence 20092009.

G. Kovacs, L. Petrac, and E. Niel, “Supervisory control based
on multi-face modelling of discrete event systems,” Rmoc. 10th
International Workshop on Discrete Event SysteRtsl 0.

D. J. Armstrong, “The quarks of object-oriented devehemt,”
Commun. ACM vol. 49, pp. 123-128, February 2006. [Online].
Available: http://doi.acm.org/10.1145/1113034.1113040

