
Supervisory control based on multi-face

modelling of discrete event systems

Gábor Kovács
∗

Laurent Piétrac
∗∗

Eric Niel
∗∗

∗ Department of Control Systems and Information Technology,
Budapest University of Technology and Economics, Budapest, Hungary

∗∗ Laboratoire Ampère, INSA Lyon, France

Abstract: This paper reports a supervisory control design methodology based on the multi-
face modelling of discrete-event systems in order to allow rapid prototyping and flexible
implementation of controllers for reactive systems. Although Supervisory Control Theory assures
that the closed loop system meets the prescribed requirements, it uses ordinary finite state
machines as process models, which results in complicated and large-scale controllers. A new
modelling methodology simplifies modelling by introducing functional models based on tasks,
which allow the reduction of component models. The paper presents a multi-level supervisory
control architecture for systems modelled in the framework and derives the properties of the
overall control system. Propositions for the implementation of such supervisory architectures
are also made.

Keywords: Discrete Event Systems, Supervisory Control, Rapid Control Prototyping

1. INTRODUCTION

In the last decades, with the evolution of electronics, infor-
matics and mass production, the systems to be controlled
have become more and more complex, facing control en-
gineers a hard task to assure desired behaviour of such
processes. Ad hoc and intuitive methods, which are used
in case of small-scale systems, are no longer applicable.

Formalization of discrete event controller design has been
started and methods for modelling discrete event systems
and their control has been proposed, see Cassandras and
Lafortune (1999). Besides using finite state automata
themselves, other approaches based on them like Petri
nets, Grafcet, Statecharts or the concept of Function
Blocks have been adopted by academic and/or industrial
practice. However, these advanced models provide only
a tool for modelling, and not for controller synthesis.
Controllers are still designed commonly in an ad hoc and
intuitive manner, based on human expertise and creativity.

Another issue, which has arisen along with the complexity,
is the safety and security of systems. Control engineers
dealing with complicated systems are not capable of assur-
ing the safe operation of such systems in each and every
state. By applying verification and failure analysis, the
risks can be minimized, however, these procedures need
time-consuming iterative design of controllers to finally
meet the requirements.

The need for formal methods has been fulfilled by Su-
pervisory Control Theory (SCT), providing a theoreti-
cally well-based framework for the design of discrete-event
controller structures. Supervisors synthesized according to
the principles of SCT can assure that the closed loop

⋆ This research was partially funded by the Hungarian Scientific

Research Fund under grant OTKA K 71762.

system respects the prescribed requirements, and therefore
makes verification unnecessary. However, SCT uses ordi-
nary finite state machines as modelling tool, so controller
design for large-scale systems is cumbersome due to the
enormous number of states in complex models. Moreover,
some operations of the supervisor synthesis require the
combination of process and specification models, resulting
in automata with state spaces really hard to handle. To
overcome these problems, modular and hierarchic supervi-
sory control have been introduced (see Wong and Wonham
(1996) and Wonham and Ramadge (1988)), but modelling
of complex systems has remained cumbersome.

No matter which tool is used for modelling, supervisory
controllers are mainly designed in a tailored manner, i.e.
new process and specification models are created for each
application. However control engineers save their previ-
ously designed models and try to apply them for new
systems, there exist no unified model libraries, commonly
used in other fields of control engineering. This phe-
nomenon makes the design of supervisory controllers a
time-consuming procedure. A novel modelling framework
has been proposed in Kovács and Piétrac (2009), which
helps control engineers to work with smaller-scale models
and also allows reusability of previously designed models
while keeping the whole procedure within the framework
of SCT. The main idea of the approach is borrowed from
rapid control prototyping, where the process model (and
sometimes also the controller model) is built up from pre-
defined, off-the-shelf components. These predefined com-
ponent models are then connected and their global be-
haviour is specified. Two main representations are defined
for each component. From the technological representa-
tion, which follows from the physical properties of the
component, a functional representation is obtained, which
describes only the most important functional properties by
the means of tasks carried out by the given component.



Therefore, when assembling the model of the system of
building blocks of components, the control engineer has to
focus only on important functionalities, and technological
details are left hidden. Nevertheless, the size of functional
models is smaller than the technological ones, and so the
model of the whole system can be kept in a reasonable
size.

The approach also introduces a novel concept for supervi-
sory control design. Two kinds of controllers, namely task
controllers and functional controllers are introduced. Task
controllers, which are parts of the component representa-
tions and therefore are stored in the model library, are
defined for the tasks and are responsible for respecting the
safety, security and liveliness requirements. The functional
controller, defined for the ensemble of the components
used, is responsible for the coordination of their tasks.

The remaining part of the paper is organized as follows.
Section 2 summarizes some of the most important no-
tations and principles of Supervisory Control Theory. In
Section 3 an overview on the proposed framework for con-
troller design and the models used is given, while Section
4 presents the procedure of supervisor synthesis. Section
5 proposes control architectures for the framework and
Section 6 concludes the paper.

2. PRELIMINARIES

Here only some fundamental principles and notations of
SCT and automata theory are presented in order to keep
the paper as self-contained as possible. For further details
the reader may refer to Wonham (2002) and Hopcroft and
Ulmann (1979).

The discrete-event system G is described by the 5-tuple
G = {QG,ΣG, ρG, qG

0 , QG
m} with QG as its state set, ΣG as

its event set, ρG : QG ×ΣG → QG as its partial transition
function, qG

0 as its initial state and QG
m as the set of its

marking states. The event set ΣG can be divided into the
distinct sets of controllable and uncontrollable events so
that ΣG = ΣG

C ∪ ΣG
U , where ΣG

C ∩ ΣG
U = ∅. The notation

ρG(q, σ)! means that there exists a transition associated
with the event σ ∈ ΣG leaving the state q ∈ QG. Partial
transition functions can be extended to the set of strings
instead of symbols of an alphabet.

The language generated by G is denoted by L(G). The
notation L stands for the prefix closure of a language
L. The natural projection of a language L ∈ Σ∗ to
an alphabet Σ′ is denoted by PΣ′(L) while the inverse
projection is denoted by P−1

Σ (L′).

The synchronous product (or parallel composition) of two
DESs G1 and G2 describes the operation of a system
in which the G1 and G2 operates synchronously. The
synchronous product operation of two DESs is defined by
L(G1 ‖ G2) = P−1

ΣG1∪ΣG2
(L(G1)) ∩ P−1

ΣG1∪ΣG2
(L(G2)).

The goal of supervisor synthesis is to define a supervi-
sor which can restrict the operation of the system to
meet the constraints of the specifications defined by the
language E, often given in the form its generator. The
supervisor S is a function S : L(G) → Γ defined by
Γ = {γ = PWR(Σ) | γ ⊇ ΣU}, where γ represents the
set of events authorized by S and PWR(Σ) is the set of

all subsets (the power set) of Σ. If the specifications are
controllable, the automaton S/G describing the supervised
system is the product of G and E. In other cases the
supremal controllable sublanguage (or maximal permissive
sublanguage) of E can be found, which allows the greatest
possible set of controllable events. This sublanguage allows
only those operations described by L(G) which respects
the constraints given by E. The supremal controllable sub-
language of a specification E with respect to the language
L will be denoted by E↑L.

3. OVERVIEW OF THE FRAMEWORK

Results presented in this paper are based on the framework
presented in Kovács and Piétrac (2009). However, for the
sake of self-dependence, most important features of the
framework and component models used will be summa-
rized in the followings, using the example of a two-degrees-
of-freedom pick and place machine.

3.1 Framework for rapid prototyping

The framework is based on the use of components, which
are such parts of a system, which can be distinguished by
the mean of their functionality and IOs. Such components
are collected to the component library, which contains
reusable models. Components can be modeled fundamen-
tally by two points of views. One is the technological
aspect, which uses large-scale, detailed models with events
corresponding to the evolution of IOs. On the other hand,
the functional point of view focuses on the functionality
of the component, with events corresponding to complex
tasks (e.g. movement of the machine from one position to
another), and with a moderate-sized state space. When
components are composed to form new components, or
to create the model of the whole system, the functional
models are used for the composition, and therefore the
problem of state explosion is less significant.

The technological and functional models are connected by
the tasks. If one observes the common behaviour of DESs,
he or she can note that there are operations which these
systems execute time to time. Often these operations can
be grouped together and referred to as tasks. For example,
a task of a linear axis can be a movement from the negative
extremity to the positive one, which comprises movement
and stop of the motor in the right order. However, these
operations correspond not just output patterns but can
also depend on sensor inputs, e.g. movement of the axis
should be stopped when the signal of an end switch rises.

The concept of tasks is not unfamiliar to the control
engineers working with DESs (see, for example, Vyatkin
and Hanish (2006)). However, task concept presented here
is compatible with SCT, and therefore brings the benefits
of formal methods close to industrial practice.

The procedure of modelling a system using the frame-
work is as follows. The system is at first decomposed to
components, which are, if needed, further decomposed to
subcomponents. For example, the pick and place machine
can be decomposed to the components of the two linear
axis. If the axis model can be found in the component
library, it is selected, otherwise its models presented in the
followings have to be defined. The model of the machine is



composed of the functional models of the axis, and if tasks
and a functional model is defined, it can be treated as a
component, from which more complex systems (e.g. a cell
containing two machines) can be assembled.

Supervisors are designed for each task of each component,
and finally for the global system. Controllers correspond-
ing to components are also stored in the library.

3.2 Models of a component

In the followings, the models corresponding to different
faces of a component will be presented. To help the
reader, most important models will be illustrated on the
component of a linear axis, driven by an electric motor
and equipped with two end switches at the positive and
negative extremities.

Technological model In case of atomic components, the
Technological model represents all possible evolution of
inputs and outputs of the component which are allowed
by its physical manifestation. At first the possible evo-
lution of each IO is modeled, and then these models
are restricted by physical constraints (e.g. in case of
the linear axis, the two end switches can not be active
at the same time), represented by the language of the
evolution of IOs allowed by the constraints, LPhC . For-
mally, the Technological model is given by the 5-tuple
GTech = {QTech,ΣTech, ρTech, qTech

0 , QTech
m }. In case of

atomic components, GTech is the generator of the language
L(GIO) ∩ LPhC .

In case of composed components, there is no need to define
physical constraints, so GTech =‖j GF

j , where GF
j is the

functional model of the jth subcomponent.

Specifications for Safety, Security and Liveliness In
practice there are requirements of safety, security and
liveliness which shall be respected no matter what func-
tionality the given component should realize. They rep-
resent the avoidance of such operations which are physi-
cally possible, and therefore allowed by the technological
model, but which cause instable or dangerous behaviour
of the component. For example, the linear axis should
not be started towards the negative direction if it is at
the negative extremity. These specifications are referred to
as Specifications of Safety, Security and Liveliness (S3L)
which is given by the language ES3L.

The Nominal model Obviously the aforementioned spec-
ifications are defined for the process model and it has to
be guaranteed that they are respected before obtaining
the functional model, which will be therefore based on a
system assuring the specifications. An adequate DES can
be defined using the supremal controllable sublanguage of
the Technological model with respect to the Specifications
of Safety, Security and Liveliness. Therefore the Nominal
model is defined as the minimal trim automaton which
marks the supremal controllable sublanguage of ES3L with
respect to the language of the technological model, i.e.
L(GTech). The Nominal model is given by the 5-tuple
GN = {QN ,ΣN , ρN , qN

0 , QN
m} and the language it gener-

ates will be referenced as LN in the followings.

q0q1 q2

q3q4 q5

q6q7 q8

m:z

m:p1 m:z

m:z

m:p1

m:z

m:n1

m:n1

m:zm:z

n:fall

p:rise

p:fall

n:rise

Fig. 1. Nominal model of the linear axis

The Nominal model of a linear axis is shown by Fig. 1.
Events with prefixes p : and n : correspond to the signals of
the end switches at the positive and negative extremities
while events m : z, m : n1 and m : p1 correspond to
the stop, negative and positive direction movements of the
motor, respectively.

Tasks The resulting Nominal model depicts only such
operation of the component which is allowed by the spec-
ifications of safety, security and liveliness. However, it de-
scribes the operation of the component in details, by low-
level events, so the Nominal model is an ideal candidate to
build a functional model on. As presented afore, the way
from technological to functional representations is paved
by the tasks.

At first, let us define the part of the IO model to be
included in the task by the task core model, which is given
by the 5-tuple GTc

j = {QTc
j ,ΣTc

j , ρTc
j , qTc

0,j , Q
Tc
m,j} for the

jth task. The state and event set of the task core model
are subsets of the state and event set of the Nominal model,
i.e. QTc

j ⊆ QN and ΣTc
j ⊆ ΣN . The transition function is

defined as follows:

ρTc
j (qTc

j , σ) =

{

ρN (qTc
j , σ) if ρN (qTc

j , σ) ∈ QTc
j

undefined otherwise

The initial state of the task core model is a state qTc
0,j ∈ QTc

j

from where all the other states of the task core model are
accessible:

∀q ∈ QTc
j ,∃s ∈ ΣTc

j

∗
: ρ(qTc

0,j , s) = q

The set of the marked states of the task core model is
QTc

m,j ⊆ QTc
j such that

QTc
m,j = {q ∈ QTc

j ∄σ ∈ ΣTc
j such that ρ(q, σ)!}

Before giving the definition of the task, two new events
shall be introduced. The first one corresponds to the start
of the task which will be referred to as the start event
and will be denoted by σstart

j in the followings. The other,
reporting the completion of the task will be referred to

as the confirmation event and will be denoted by σconf
j .

Since tasks are started by the controller, the start event
is defined to be controllable. Confirmation events, enabled
by the tasks (more accurately the task supervisors) them-
selves, are also controllable. These events are collected to

the alphabet of task events ΣT =
⋃

j{σ
start
j , σconf

j }.



P:start m:p1 neg:fall pos:rise m:z

P:conf

m:n1,m:p1,m:z,

neg:rise,neg:fall,

pos:rise,pos:fall

q0 q1 q2 q3 q4 q5

Fig. 2. Model of the task of positive motion

Using the task events and the task core model the
task model can be defined by giving the 5-tuple GT

j =

{QT
j ,ΣT

j , ρT
j , qT

0,j , Q
T
m,j}. The state set of the task model

is QT
j = q′0 ∪ QTc

j while its event set is the union of the
event set of the corresponding task core model and the

task events: ΣT
j = ΣTC

j ∪ {σstart
j , σconf

j }. The initial state
of the task model is defined to be the newly added state,
i.e. qT

0,j = q′0. The transition function is defined as follows:

ρT
j (qT

0,j , σ
start
j ) = qTc

0,j

ρT
j (qT

0,j , σ) = qT
0,j∀σ ∈ ΣTc

j

ρT
j (q, σconf

j ) = qT
0,j , q ∈ QTc

m,j

For other states:

ρT
j (q, σ) = ρTc

j (q, σ) , ∀ρTc
j (q, σ)!

The only marking state is the initial state i.e. QT
m,j =

{qT
0,j}, while the language generated by the task model is

L(GT
j ) = σstart

j .LTc
m,j .σ

conf
j

Fig. 2 illustrates the task model corresponding to the
movement of the linear axis towards the positive direction.
The task start and confirmation events are P : start and
P : conf , respectively.

The definition of the tasks, i.e. the selection of task core
models is left to the control engineer.

The Integral model Now a common model can be de-
fined, which comprises also the functional and the techno-
logical representations. An intermediate step is to create a
model by the parallel composition of the task models and
the Technological model and check its controllability with
respect to the so-called Task Alternance Specification.

The Task Alternance Specification (TAS) captures the
property that technological events can only happen inside
tasks (i.e. preceded by a task start event and succeded
by a task confirmation event), which is true if the model
is well covered. It also allows the activity of only one
task of a component at the same time. The TAS model
is defined by ETAS = {QTAS ,ΣTAS , ρTAS , qTAS

0 , QTAS
m },

where QTAS = {qTAS
0 , qTAS

1 } and the former is defined to
be the initial state, ΣTAS = ΣTech ∪ΣT , QTAS

m = {qTAS
0 }.

The partial transition function is defined by

ρTAS(qTAS
0 , σ) = qTAS

1 , ∀σ ∈
⋃

i

σstart
i

ρTAS(qTAS
1 , σ) =







qTAS
0 , ∀σ ∈

⋃

i

σconf
i

qTAS
1 , ∀σ ∈ ΣIO

If ETAS is controllable with respect to GTech ‖j GT
j ,

then the model is said to be well covered by the tasks.

P:start m:p1 neg:fall pos:rise m:z

P:conf

q0 q1 q2 q3 q4 q5

q11 q10 q9 q8 q7 q6

m:z neg:rise pos:fall m:n1 N:start

N:conf

Fig. 3. Integral model of the linear axis

P:start

P:conf

N:start

N:conf

q0 q1

q2q3

Fig. 4. Functional model of the linear axis

Otherwise, task models have to be redefined or new tasks
have to be included.

The Integral model can then defined as the composition
GI = GTech ‖j GT

j ‖ GTAS and is given by the 5-tuple

GI = {QI ,ΣI , ρI , qI
0 , QI

m}.

Since the functional model is derived from the integral
one, it is important to show that, if we omit the events
corresponding to the start and completion of the states,
the integral model respects the specifications S3L. This
property is justified by the following theorem.

Theorem 1. If the model is well covered by the tasks, then
the projection of the language generated by the Integral
model to the alphabet of technological events rests within
the language of the Nominal model: PΣT ech(LI) ⊆ LN .

The functional model The functional behaviour of the
model can be described by the tasks, which depict the
operation by collecting a series of low-level events to one
single object. Therefore, the operation of the process (re-
specting the specifications of safety, security and liveliness)
can be considered as starting tasks and waiting for their
completion. So the functional model can be obtained as
the projection of the integral model to the task events.
The functional model is the generator of the language
LF = PΣT (LI) and is defined by the 5-tuple GF =
{QF ,ΣF , ρF , qF

0 , QF
m} where ΣF = ΣT . The functional

model of the linear axis component is shown by Fig. 4.

The following theorem states that the integral model of a
component can be reconstructed from its functional model
and its task models.

Theorem 2. The language generated by the parallel com-
position of the functional model and the task models
equals the language generated by the integral model:
P−1

ΣT ech∪ΣT (LF ) ∩ (
⋂

j P−1
ΣT ech∪ΣT (L(GT

j ))) = LI

Proof of the theorems are based on the proofs presented
in Kovács and Piétrac (2009).

3.3 Assembling the model of the system

The model of the system can be obtained as the parallel
composition of the functional models of the subcompo-
nents, i.e. GF =‖j GF

j . Note that the use of functional
models causes a significant decrease of the size of the state
space.



X:P:start X:P:conf Z:P:start Z:P:conf

X:N:startZ:N:startZ:N:conf

X:N:confZ:N:start

X:N:conf

X:N:conf

Z:N:conf

q0 q1 q2 q3 q4

q7 q6 q5

q9 q8

Fig. 5. Operation of the pick and place machine in closed
loop

Based on the functional model of the system, appropriate
functional specifications can be defined, and the model of
the closed loop can be obtained. The model depicted by
Fig. 5 represents the closed loop operation of the machine
respecting the specifications that movements should be
carried between the negative and positive extremitys of
the two axis, and that the simultaneous movement of the
two axis to the positive direction is forbidden. The prefixes
X : and Z : denote the tasks corresponding to the X and
Z axis, respectively.

4. SUPERVISOR DESIGN PROCEDURE

Following the component-based principles of modelling,
the supervisory control architecture is also built up com-
ponent by component. For each task, a task supervisor is
defined, which deals with physical IOs in case of atomic
components and the task events of the subcomponents
in case of composed components. The role of the task
controller is to ensure that the specifications of safety,
security and liveliness are respected when the given task
is active.

Task controllers are running only if the given task is active.
Activation of a tasks is carried out by the corresponding
task start event, controlled by the functional supervisor.
Therefore, the functional supervisor deals only with task
events: it activates tasks by the appropriate start events
and is notified about their successful termination by the
corresponding confirmation events.

However, Supervisory Control Theory does not allow the
generation of events for the supervisors, so in order to deal
with the functional events, the process model has to be
extended by a simple task event generator, which generates
the start and confirmation events. The functional super-
visor influences the occurrence of the controllable start
events by enabling/disabling them, while the occurrence
of the confirmation events is controlled by the task super-
visors.

Definition 1. The task generator is a discrete event sys-
tem GTEG =

{

QTEG,ΣTEG, ρTEG, qTEG
0 , QTEG

m

}

where

QTEG = {q}, ΣTEG = ΣF , ρTEG(q, σ) = q,∀σ ∈ ΣTEG,
qTEG
0 = q, QTEG

m = {q}. The language generated by the

system GTEG‖GTech will be noted by LP ′
.

4.1 Task supervisors

Task supervisors are such supervisors which act only if
the given task is activated, i.e. after the occurrence of the
corresponding task start event.

Definition 2. The task supervisor corresponding to a task
Ti is a mapping ST

i : LT
i 7→ ΓT

i ∈ Pwr(ΣT
i ), where the

control map is given by

ΓT
i (s) = ΣT

i,UC ∪ {σ ∈ ΣT
i,C ρT

i (qT
0,i, s.σ)!}

Roughly speaking, the task supervisor ensures that tech-
nological events occure only according to the task core
models, and it allows the generation of the confirmation
event if and only if the task has been completed, i.e. the
task core language has been generated by the process.

4.2 Functional supervisor

The role of the functional supervisor is to coordinate the
execution of the tasks. It is designed on the basis of the
functional model of the system by the control engineer, in
order to meet the requirements of the actual problem.

Definition 3. The functional supervisor is the mapping
SF : L(F ) 7→ ΓF ⊆ Pwr(ΣT ) where the control map is
defined by

ΓF (s) = ΣT
UC ∪ {σ ∈ ΣT

C ρF (qF
0 , s.σ)!}

4.3 Cooperation of the supervisors

The defined supervisory control architecture needs the
functional supervisor and a particular subset of task su-
pervisors to be active at each time instance. Therefore at
first the composition of two supervisors should be ensured.
The inverse projection of a supervisor to a language, i.e.
the extension of its control map to deal with all events of
the given language, is defined as follows.

Definition 4. Consider a language L′ ⊆ Σ′∗ and a super-
visor S′ : L′ 7→ Γ′, where Γ′ ⊆ Pwr(Σ′). The inverse
projection of the supervisor to a language L ⊆ Σ∗, where
Σ′ ⊆ Σ is P−1

L (S) : L 7→ Γ, where the control map is
defined by

Γ(s) = (Σ \ Σ′) ∪ Γ′(PΣ′(s))

Using the operation of inverse projection, composition
of supervisors can be defined similarly to the parallel
composition of languages.

Definition 5. The composition of two supervisors, S1 :
L1 7→ Γ1 and S2 : L2 7→ Γ2 on the language L is denoted
by S = S1 ∧L S2 and is defined by S : L 7→ Γ. The control
map is Γ(s) = Γ′

1(s) ∩ Γ′
2(s), where Γ′

1 and Γ′
2 are the

control maps of P−1
L (S1) and P−1

L (S2).

Theorem 3. The language of the closed loop under the
supervision of an arbitrary functional supervisor and the
task supervisors does not violate the specifications of
safety, security and liveliness, i.e.

PΣT ech(L(ST
1 ∧LP . . .∧LP ST

n ∧LP SF )/(GP ‖ GTEG)) ⊆ ES3L.

Outline of the proof Let us assume that a simple func-
tional supervisor is defined, which restricts the functional

behaviour of the closed loop to σstart
1 .σconf

1 . Therefore, the
language of the closed loop is

SF /(GP ‖GTEG) =
⋃

u.v.w∈LP

u.σstart
1 .v.σconf .w

According to Definition 2, the task supervisor enables
events according the language of the task core model
to be included between the start and the confirmation



event. Also, due to the definition of the task core model,
it is controllable with respect to the specification ES3L.
Therefore,

(ST
1 ∧LP SF )/(GP ‖GTEG) =

=
⋃

u.LT c

1
.w∈LP

u.σstart
1 .LTc

1 .σconf .w

However, if the model is well covered by the tasks, we have
u = ǫ and w = ǫ, which means that

(ST
1 ∧LP SF )/(GP ‖GTEG) = LT

i ⊆ LI .

According to Theorem 2, PΣT ech(LI) ⊆ LN ⊆ ES3L,
therefore the operation of the closed loop meets the
specifications.

The procedure above can be generalized to any arbitrary
functional supervisor inside the functional model.

5. SUPERVISORY CONTROL ARCHITECTURES

Supervisors defined in the previous sections can be imple-
mented in various ways, depending on the system to be
controlled and on the available resources.

5.1 Monolithic architecture

The classical way for supervisor implementation is to de-
sign one single monolithic controller running on one single
device. However flattening the supervisor architecture to
one single supervisor is possible, or the supervisor can be
synthesized directly based on the integral model, such a
controller does not benefit from the properties of moderate
state and event-space. On the other hand, especially for
small-scale systems, a monolithic architecture might be
suitable as it needs one single, low-performance controller
device and therefore cuts down expenses compared to more
sophisticated architectures.

5.2 Distributed architecture

A more suitable method for implementation follows natu-
rally from the architecture of the supervisors. By combin-
ing modular and hierarchical approaches, the controller
can be implemented as follows.

Task controllers are implemented for each task or each
component. Since task supervisors are relatively simple
and only one task of a component can be active at a
time, it is straightforward to implement all supervisors
corresponding to tasks of a given component in one device.
The functional controller is implemented independently
from the tasks supervisors. Since there is no need for
communication between the task controllers themselves,
only between each task controller and the functional
controller, a simple communication architecture can be
used. Nevertheless, bus systems may also be suitable.

The only drawback of this architecture versus the mono-
lithic one is that it needs several phisical devices to im-
plement the controllers on. On the other hand, it also
provides flexibility for the system. If a given component is
replaced by another one providing the same functionality,
only its controller has to be adjusted and there is no need
to reimplement the whole control system.

The distributed control architecture of the pick and place
machine is shown by Fig. 6.

SF

ST
1 ST

n

σstart
1

σconf
1

σstart
n

σconf
n

· · ·
Physical IOs

Fig. 6. Distributed control architecture

5.3 Single-device distributed architecture

By combining the two previous approaches, a distributed
architecture can be implemented on one single device.
Clearly, on single-core devices, only one controller (func-
tional or one of the task controllers) can run at a time,
therefore controller execution has to be based on time-
sharing. In applications requiring hard real-time control,
this option is not applicable. However, considering that the
majority of the industrial processes are controlled by PLCs
which can not guarantee arbitrarily small response times
due to their cyclic behaviour, in case of moderate number
of components such an architecture would be a suitable so-
lution. A proposition for such distributed control software
architecture for PLCs is given in Kovács (2009).

6. CONCLUSION

The supervisory control design procedure, based on the
multi-face modelling of discrete-event systems, plays an
important role in a new framework for the rapid proto-
typing of discrete event controller structures. It has been
shown that by using the proposed supervisor architecture,
the closed loop behaviour does not violate the prescribed
specifications.

Future work includes the definition of the model library,
integration with IEC61499-based control design and meth-
ods for automatic code generation for various platforms.

REFERENCES

Cassandras, C. and Lafortune, S. (1999). Introduction to
Discrete Event Systems. Kluwer Academic Publishers,
Boston.

Hopcroft, J. and Ulmann, J. (1979). Introduction to Au-
tomata Theory, Languages and Computation. Addison
Wesley.

Kovács, G. (2009). On the implementation of task-based
supervisory controllers. Proc. 13th IFAC Symposium
on Information Control Problems in Manufacturing.
Moscow, Russia, 1, 430–435.

Kovács, G. and Piétrac, L. (2009). Multi-faced model-
ing for rapid prototyping of discrete event control sys-
tems. Proc. European Control Conference. Budapest,
Hungary, 1, 1463–1468.

Vyatkin, V. and Hanish, H. (2006). Design of controllers
for plug-and-play composition of automated systems
from smart mechatronic components. Proc. ANIPLA
International Congress.

Wong, K. and Wonham, W. (1996). Hierarchical control
of discrete-event systems. Discrete Event Dynamic
Systems: Theory and Applications, 6, 241–273.

Wonham, W. (2002). Notes on Control of Discrete Event
Systems. University of Toronto.

Wonham, W. and Ramadge, P. (1988). Modular supervi-
sory control of discrete event systems.


