
Multi-face modeling for rapid prototyping of discrete event control systems

Gábor Kovács
Department of Control Engineering and

Information Technology
Budapest University of Technology and Economics

Budapest, Hungary
Email: gkovacs@iit.bme.hu

Laurent Piétrac
Laboratoire Ampère
INSA de Lyon

Villeurbanne, France
Email: laurent.pietrac@insa-lyon.fr

Abstract— This paper reports a methodology for the multi-
face modeling of discrete-event systems to be used in a
framework for the rapid prototyping of supervisory controllers.
However Supervisory Control Theory provides a possibility for
the synthesis of supervisors proven to respect the specifications,
it uses ordinary finite state machines and operations resulting
in state explosion, so therefore hardly applicable for large-scale
systems. The aim of the presented methodology is to simplify
and accelerate controller design procedure by model reduction.
By the introduction of task philosophy and component-based
design, a methodology for obtaining moderate-size functional
models from technological representations is presented. The
paper gives definitions for models serving as different repre-
sentations of components and for the conversion between them.

I. INTRODUCTION

With the evolution of technology, more and more complex
systems are to be controlled, facing engineers a hard task of
controller design. Ad hoc and intuitive methodologies, used
in the industrial practice, are no more sufficient. Formal-
ization of discrete event controller design has been started
and several methods for modeling discrete event systems
and their control has been proposed [1]. Automata-based
approaches, used in industrial practice, has been adopted by
many tools.
Besides using finite state automata themselves, many

achievements have been made. The introduction of Petri nets,
especially colored ones has allowed the use of moderate-
size models. The Grafcet method, popular in industrial
practice, allows the use of some well-known principles of
programming in the field of automata-based modeling. One
of the most advanced tools is Harel’s Statecharts, providing
hierarchic and concurrent modeling possibilities. Statecharts
has been adopted by information technology, and became
coherent part of the Unified Modeling Language (UML).
However, these advanced models provide only a tool for
modeling, and not for controller synthesis. Controllers are
still designed commonly in an ad hoc and intuitive manner,
and however the tools mentioned afore facilitate the task
of control engineers by keeping the size of models more
comprehensible, controller synthesis is mostly based on
human experience and creativity.
The need for formal methods has been fulfilled by the

Supervisory Control Theory (SCT), providing a theoretically

based framework for the synthesis of discrete-event con-
troller structures. Supervisors synthesized according to the
principles of SCT can assure that the closed loop system
respects the prescribed requirements. However, SCT uses
ordinary finite state machines as modeling tool, so controller
design for large-scales systems is cumbersome due to the
enormous number of states in more complex models. More-
over, some operations of the supervisor synthesis require the
combination of process and specification models, resulting in
automatons with a size really hard to handle. To overcome
these problems, modular and hierarchic supervisory control
has been introduced (see [2] and [3]), but modeling of
complex systems has remained cumbersome.
No matter which tool is used for modeling, supervisory

controllers are mainly designed in a tailored manner, i.e. new
models are created for each application. However control
engineers save their previously designed models and try to
apply them for new systems, there exist no unified model
libraries, commonly used in other fields of control engi-
neering. This phenomenon makes the design of supervisory
controllers a time-consuming procedure.
This paper presents a novel methodology, which helps

the control engineer to overcome both on the problem of
large-scale models and reusability of previously defined
models while keeping the procedure within the framework
of SCT. Borrowing the idea from rapid control prototyping,
the approach uses component-based modeling of systems.
Components are modeled from two approach. From the tech-
nological representation, which follows from the physical
properties of the component, a functional representation is
obtained, which describes only the most important func-
tional properties by the means of tasks carried out by the
given component. Therefore, when assembling the model of
the system of building blocks of components, the control
engineer has to focus only on important functionalities,
and technical details left hidden. Nevertheless, the size of
functional models is smaller then the technological ones,
and so the model of the whole system can be kept in a
reasonable size. Modeling is also supported by a component
library allowing the acceleration of control design procedure.
This paper gives formal definitions of the models serv-

ing as the technological and functional representations of
components, and gives a method for obtaining the functional

Proceedings of the European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009 MoC10.2

ISBN 978-963-311-369-1
© Copyright EUCA 2009

Multi-Face Modeling for Rapid Prototyping of Discrete Event Control
Systems

1463

model from the technological one. The remaining part of the
paper is organized as follows. Section II summarizes some of
the most important notations and principles of Supervisory
Control Theory. In Section III an overview on the proposed
framework for controller design is given. Section IV presents
the notations of the technological representation of a compo-
nent while Section V describes how a functional model can
be obtained from it. Section VI concludes the paper.

II. PRELIMINARIES
Here only some fundamental principles and notations of

SCT and automata theory are presented in order to keep the
paper as self-contained as possible. For further details the
reader may refer to [4] and [5].
The discrete-event system G is described by the 5-tuple

G = {QG,ΣG, ρG, qG
0

, QG
m} with QG as its state set, ΣG as

its event set, ρG : QG × ΣG∗
→ QG as its extended partial

transition function, qG
0
as its initial state and QG

m as the set
of its marking states. The event set ΣG can be divided into
the distinct sets of controllable and uncontrollable events so
that ΣG = ΣG

C ∪ ΣG
U where ΣG

C ∩ ΣG
U = ∅. The notation

∃ρ(q, σ) means that there exists a transition associated with
the event σ ∈ ΣG leaving the state q ∈ QG.
The language generated by G is denoted by L(G). The

prefix closure of a language L is denoted by L. An important
operation on languages is the natural projection to a given
alphabet Σ, defined by the followings:

PΣ(ε) = ε

PΣ(σ) =

{
σ if σ ∈ Σ
ε otherwise

PΣ(σ.t) = PΣ(σ).PΣ(t)

The extension of the definition above for languages
is straightforward. The inverse projection is defined by
P−1

Σ
(s) = {t ∈ ΣPΣ(t) = s} and can be also extended

to languages.
The synchronous product (or parallel composition) of

two DESs G1 and G2 describes the operation of a sys-
tem in which the G1 and G2 operates synchronously. The
synchronous product operation of two DESs is defined by
L(G1 ‖ G2) = P−1

ΣG1∪ΣG2
(L(G1)) ∩ P−1

ΣG1∪ΣG2
(L(G2)).

The goal of supervisor synthesis is to define a supervisor
which can restrict the operation of the system to meet the
constraints of the specifications, modeled by a DES E. The
supervisor S is a function S : L(G) → Γ defined by
Γ = {γ = PWR(Σ) | γ ⊇ ΣU} where γ represents the
set of events authorized by S and PWR(Σ) is the set of
all subsets (the power set) of Σ. If the specifications are
controllable, the automaton S/G describing the supervised
system is the product of G and E. In other cases the
supremal controllable sublanguage (or maximal permissive
sublanguage) of L(G) can be found, which allows the
greatest possible set of controllable events, see [6] and [7].
This sublanguage allows only those operations described
by L(G) which respects the constraints given by E. The
supremal controllable sublanguage of a language L regarding
the specification given by E will be denoted by L↑E .

The controller model is also described by a 5-tuple
C = {Q,Σ, ρ, q0, QM}, possibly extended by a control map
Θ : Q×ΣC → {0, 1}. The controller C is constructed based
on the automaton representing the supervised system and
the supervisor itself, and gives the automaton model of the
controller with the events to be enabled or disabled in each
of its states defined by the control map.
Controller design is based on the models of the process

and the specification, upon which the supervisor is synthe-
sized. Then a controller model, which is a representation of
the supervised system, is derived and is implemented on a
suitable platform.

III. OVERVIEW OF THE FRAMEWORK

The results summarized in this paper are the theoretical
basis of a framework for the rapid prototyping of supervi-
sory controllers for discrete event systems. This framework
comprises multiple modules for the support of controller
synthesis and realization.

A. Component models

The framework borrows the idea of components from
the methodology of system modeling and reflects the phe-
nomenon that different systems are built up from the same
components, e.g. various consumer products of different
manufacturers use the same parts for a given task. Com-
ponents are systems, devices or subsystems, which can be
defined and which can act independently from other compo-
nents. The most simple devices, such as valves or binary sen-
sors, are represented by atomic components. Atomic means
here that there is no use further decomposing them, or they
can not be decomposed. On the other hand, more complex
components can be built up using smaller components, i.e. a
model of a cylinder can contain several valve components.
There are two fundamental points of view during the

development. One is the technological point of view, consid-
ering technological details and thinking of low-level opera-
tions and physical signals. From the functional point of view
details of the operations remain hidden and the component
is considered as a device executing more complex tasks.

B. Component library

One of the basic ideas of the framework is the use of a
component library. Commonly used components, like differ-
ent sensors, actuators or more complex devices, are stored
in a library, and during the modeling of the system only the
interconnection of such components has to be defined.
The aforementioned method of modeling systems has an

important benefit considering the conception of a component
library. It is a common situations that there exist various
components which realize the same function, e.g. a hydraulic
or pneumatic bistable cylinder. Although their technological
models are different, their functional representations are the
same, which makes it possible to use one single model for
the high-level description of different components.

G. Kovács and L. Piétrac : Multi-Face Modeling for Rapid Prototyping of Discrete Event Control Systems MoC10.2

1464

C. Controller design
Controller design is supported by the aforementioned

model library, therefore the procedure of system modeling
can be significantly accelerated. The user can select the
components the given physical process is built up from,
and pick their discrete-event models from the library. These
models also comprise low-level controllers in order to assure
that the most important safety and security requirements
are respected. Therefore, by using the component library,
elementary safety properties are guaranteed, and a good
percentage of errors resulting from inadequate modeling of
system components can be eliminated.
Obtaining the component models from the library, the user

has to define their interactions, i.e. give a specification how
the given components should co-operate in order to fulfill
the global requirements against the supervised system. Even
though the models are already defined, in case of large-scale
systems this task is cumbersome. The proposed framework
supports this procedure by the introduction of functional
models, which depict only the important functional details of
the operation of a component, and therefore are much simpler
and smaller then ordinary technological models. Moreover,
the control engineer needs to keep in mind only the most
important functional properties of components and does not
obliged to deal with technological details.
The user gives the specifications of co-operation of com-

ponents based on their functional models and generates a
supervisor which assures that the functionality of the closed
loop system meets the requirements stated in the specifica-
tion. If the system is very complex, it can be first decomposed
to a few independent subsystems, and the procedure can
be carried out for them. Finally, from these subsystems the
model of the whole system can be assembled and the final
supervisor can be synthesized.

D. The need for adequate modeling methodology
The former sections depicted the general overview of

the framework, using the notations of technological and
functional representations of component models. It is clear
that since the basis of the framework is the use of such
models, they have to be well-defined and their properties
have to be verified theoretically. The following sections give
formal definitions of the aforementioned models and some
of their most important properties will be presented.

IV. THE TECHNOLOGICAL REPRESENTATION

A. The process model
The model on which all other models are based on gives

a purely technological representation of the component. It
is defined by the control engineer and depicts all possible
operations the given component can carry out. It contains
only physical constraints but not the limitations which should
be respected by using adequate control. Therefore, borrowing
the term from the terminology of classic control theory, this
model should be referred to as the process model of the
component and defined by the following.

Definition 1: The process model of a component is a
DES containing the discrete event model of the physical
representation of the component and is given by the 5-tuple
GP = {QP ,ΣP , ρP , qP

0
, QP

m}.
Remark There is no aid by the framework for obtaining

an adequate process model, so it needs the experience and
knowledge of the control engineer.

B. Specifications for Safety, Security and Liveliness
In practice there are requirements of safety, security and

liveliness which shall be considered no matter what function-
ality the given component should realize. They represent the
avoidance of such operations which are physically possible,
and therefore allowed by the process model, but which
cause instable or dangerous behavior of the component. An
example is the activation of two counter-effect actuators,
which shall not be active the same time. These specifications
are referred to as Specifications of Safety, Security and
Liveliness (S3L) and can be modeled by a DES.
Definition 2: The Specifications for Safety, Security and

Liveliness (S3L) are given by the following 5-tuple:
ES3L = {QS3L,ΣS3L, ρS3L, qS3L

0
, QS3L

m }.

C. The IO model
Obviously the aforementioned specifications are defined

for the process model and it has to be guaranteed that
they are respected before obtaining the functional model,
which will be therefore based on a system assuring the
specifications. An adequate DES can be defined using the
supremal controllable sublanguage of the process model
with respect to the specifications of safety, security and
liveliness. It is clear that the operation of a DES generating
the language L(GP)↑ES3L

(or a sublanguage of it) will
respect the limitations represented by ES3L.
Definition 3: The IO model of a component is the min-

imal generator of the language L(GP)↑ES3L

and is repre-
sented by the 5-tuple GIO = {QIO,ΣIO, ρIO, qIO

0
, QIO

m }.
The language generated by the IO model will be referenced
as LIO in the followings.
The resulting IO model depicts only such operation of the

component which is allowed by the specifications of safety,
security and liveliness. However, it describes the operation
of the component in details, by low-level events, so the IO
model is an ideal candidate to build a functional model on.

V. FROM TECHNOLOGICAL TO FUNCTIONAL
REPRESENTATION

A. Tasks
The way from technological to functional representations

is paved by the tasks. The main idea of the model reduction
strategy presented in this paper is the use of tasks. At first, it
will be informally explained what these tasks are, afterwards
formal definitions will be given.
If one observes the common behavior of DESs, he or

she can note that there are operations which these systems
execute time to time. Often these operations can be grouped
together and referred to as tasks. For example, a task of a

Proceedings of the European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009 MoC10.2

1465

robotic manipulator can be a movement from position A to
position B, which comprises movements of particular joints
in a given order. However, these operations correspond not
just output patterns but can also depend on sensor inputs,
e.g. movement of a joint should be stopped when a given
angular position measured by an encoder is reached.
Formally we can define a task as follows. At first, let us

define the part of the IO model to be included in the task.
Definition 4: The jth task core model is defined by a

5-tuple GTc
j = {QTc

j ,ΣTc
j , ρTc

j , qTc
0,j , Q

Tc
m,j}. The state and

event set of the task core model are subsets of the state and
event set of the IO model, i.e. QTc

j ⊆ QIO
j and ΣTc

j ⊆ ΣIO
j .

The transition function is defined as follows:

ρTc
j (qTc

j , σ) =

{
ρIO(qTc

j , σ) if ρIO(qTc
j , σ) ∈ QTc

j

undefined otherwise

The initial state of the task core model is a state qTc
0,j ∈

QTc
j from where all the other states of the task core model

are accessible:

∀q ∈ QTc
j ,∃s ∈ ΣTc

j

∗
: ρ(qTc

0,j , s) = q

The set of the marked states of the task core model is
QTc

m,j ⊆ QTc
j such that

QTc
m,j = {q ∈ QTc

j �ρ(q, σ)}
Before giving the definition of the task two new events

shall be introduced. The first one corresponds to the start
of the task which will be referred to as the start event
and will be denoted by σstart

j in the followings. The other,
reporting the completion of the task will be referred to as
the confirmation event and will be denoted by σconf

j . Since
tasks are started by the controller, the start event is defined
to be controllable. On the other hand, the confirmation event
is defined to be uncontrollable. Then the task, containing the
task core model can be defined as follows.
Definition 5: The task alphabet is the set of all task events:

ΣT =
⋃

j{σ
start
j , σconf

j }.
Using the task events and the task core model the task

model can be defined as follows.
Definition 6: The model of the jth task is the 5-tuple

GT
j = {QT

j ,ΣT
j , ρT

j , qT
0,j , Q

T
m,j}. The state set of the task

model is QT
j = q′

0
∪ QTc

j while its event set is the union of
the event set of the corresponding task core model and the
task events: ΣT

j = ΣTC
j ∪ {σstart

j , σconf
j }. The initial state

of the task model is defined to be the newly added state, i.e.
qT
0,j = q′

0
. The transition function is defined as follows:

ρT
j (qT

0,j , σ
startj) = qTc

0,j

ρT
j (qT

0,j , σ) = q
Tcj

0
∀σ ∈ ΣTcj

ρT
j (q, σconfj) = qT

0,j , q ∈ QTcj
m

For other states:

ρT
j (q, σ) = ρTcj (q, σ), q ∈ QTcj , σ ∈ ΣTcj

The only marking state of the task model is its initial state
i.e. QT

m,j = qT
0,j . The language generated by the task model

is L(GT
j) = σstart

j .LTc
m,j .σ

conf
j

The definition of the tasks, i.e. the selection of task
core models is left to the control engineer. However, it is
important that the tasks cover well the IO model.
Definition 7: The IO model of a component is said to be

well covered by the tasks if
⋂

j P−1

ΣIO
(L(GTc

j)) ⊇ LIO and
LTc

j � LTc
k for j �= k.

B. The bridge between technological and functional repre-
sentations
Now a common model can be defined, which comprises

also the functional and the technological representations.
An intermediate step is to create a model by the parallel
composition of the task models and the IO model.
Definition 8: The model B′ represented by the 5-tuple:

GB′

= {QB′

,ΣB′

, ρB′

, qB′

0
, QB′

m } is obtained by the parallel
composition GB′

= GIO ‖j GT
j . The language generated by

GB′

is LB′

.
The model defined afore is however not suitable. It allows

launching multiple tasks at the same time and therefore
can result in blocking. So a suitable specification has to be
defined in order to launch only one task a time. This property
can be assured by the following specification.
Definition 9: The Task alternation Specification (TAS) is

a 5-tuple ET = {QET

,ΣET

, ρET

, qET

0
, QET

m }. The state set
contains two states: QET

= {qET

0
, qET

1
}, and the former

one is defined to be the initial state. The event set of the
specification is ΣET

= ΣT ∪ ΣIO. The partial transition
function ρET

is defined as follows:

ρET

(qET

0
, σ) =

⎧⎪⎨
⎪⎩

qET

1
∀σ ∈

⋃
j σstart

j

qET

0
∀σ ∈ ΣIO

undefined otherwise

ρET

(qET

1
, σ) =

⎧⎪⎨
⎪⎩

qET

0
∀σ ∈

⋃
j σconf

j

qET

1
∀σ ∈ ΣIO

undefined otherwise

The only marking state is the initial state, i.e. QET

m = qET

0
.

The specification above assures that only one task can
be active at the same time, while the model B′ describes
a behavior in accordance with the IO model. Therefore
a suitable integral model can be obtained as the system
generating the supremal controllable sublanguage respecting
the task alternation specification. In order to avoid confusion
of the integral model and the IO model, we shall denote the
former one by the index B.
Definition 10: The integral model is the generator of the

language LB = L(B′)↑ET

and is defined by the a 5-tuple
GB = {QB ,ΣB , ρB , qB

0
, QB

m}, where ΣB = ΣIO ∪ ΣIO.
Since the functional model is derived from the integral

one, it is important to show that, if we omit the events
corresponding to the start and completion of the states, the

G. Kovács and L. Piétrac : Multi-Face Modeling for Rapid Prototyping of Discrete Event Control Systems MoC10.2

1466

integral model realizes the operation of the IO model. This
property is justified by the following theorem.
Theorem 1: If the model is well covered by the tasks,

then the projection of the language generated by the integral
model to the alphabet of IO events is the language of the IO
model: PΣIO

(LB) = LIO.
Proof: At first it will be shown that PΣIO

(LB) ⊇ LIO.
Due to the definition of the tasks, L(GTc

j) ⊆ LIO. Then
P−1

ΣIO
(L(GTc

j)) ⊇ LIO, and therefore it is also true that

P−1

ΣIO∪ΣT
(L(GTc

j)) ⊇ LIO (1)

On the other hand, it also follows from Definition 6 that

L(GT
j) = σstart

j .L(GTc
j,m).σconf

j . (2)

Therefore,

P−1

ΣIO∪ΣT
(L(GT

j)) =

= P−1

ΣIO∪ΣT
(σstart

j).P−1

ΣIO∪ΣT
(L(GTc

j,m)).P−1

ΣIO∪ΣT
(σconf

j)
(3)

Since σstart
j /∈ ΣIO it follows that

P−1

ΣIO∪ΣT
(σstart

j) ⊃ Σ∗
IO (4)

Likely,
P−1

ΣIO∪ΣT
(σconf

j) ⊃ Σ∗
IO. (5)

Also,
LIO = LIO

1
.L(GTc

j).LIO
2

, (6)

where LIO
1

⊆ Σ∗
IO and LIO

2
⊆ Σ∗

IO.
Therefore it follows that

P−1

ΣIO∪ΣT
(L(GT

j)) ⊃ LIO. (7)

so
P−1

ΣIO∪ΣT
(L(GT

j)) = LIO ∪ Lc
j . (8)

for some Lc
j ⊆ (ΣIO ∪ ΣT)∗. Therefore,⋂

j

P−1

ΣIO∪ΣT
(L(GT

j)) =
⋂
j

(LIO ∪ Lc
j) ⊃ LIO, (9)

so since P−1

ΣIO∪ΣT
(LIO) ⊃ LIO it follows that

LB′

=
⋂
j

P−1

ΣIO∪ΣT
(L(GT

j)) ∩ P−1

ΣIO∪ΣT
(LIO) ⊃ LIO

(10)
and therefore

LB′

= LIO ∪ LC (11)

where LC ⊆ (ΣIO ∪ ΣT)∗. Since (K1 ∪ K2)
↑ ⊇ K↑

1
∪ K↑

2

and due to Definition 9 LIO↑
= LIO, it follows that

LB ⊇ LIO (12)

and therefore
PΣIO

(LB) ⊇ LIO. (13)

Now it will be shown that PΣIO
(LB) ⊆ LIO. It follows

from Definition 8 that

LB′

= P−1

ΣIO∪ΣT
(
⋂
j

L(GT
j)) ∩ P−1

ΣIO∪ΣT
(LIO). (14)

Therefore,

PΣIO
(LB′

) =
= PΣIO

(P−1

ΣIO∪ΣT
(
⋂

j L(GT
j)) ∩ P−1

ΣIO∪ΣT
(LIO)),

(15)

so

PΣIO
(LB′

) ⊆

⊆ PΣIO
(P−1

ΣIO∪ΣT
(
⋂
j

L(GT
j)))∩PΣIO

(P−1

ΣIO∪ΣT
(LIO)).

(16)

Considering the first part of the right side of (16), one can
assume the followings.

PΣIO
(P−1

ΣIO∪ΣT
(
⋂
j

L(GT
j)) ⊆

⋂
j

PΣIO
(P−1

ΣIO∪ΣT
(L(GT

j))).

(17)
Also,

PΣIO
(P−1

ΣIO∪ΣT
(L(GT

j))) ⊆ P−1

ΣIO∪ΣT
(PΣIO

(L(GT
j))).
(18)

It follows from (2) that

P−1

ΣIO∪ΣT
(PΣIO

(L(GT
j))) =

= P−1

ΣIO∪ΣT
(PΣIO

(σstart
j).PΣIO

(LTc
m,j).PΣIO

(σconf
j)).

(19)

Since σstart
j /∈ ΣIO,σconf

j /∈ ΣIO and L(GTc
j) ⊆ Σ∗

IO,

P−1

ΣIO∪ΣT
(PΣIO

(L(GT
j))) = P−1

ΣIO∪ΣT
(L(GTc

j)). (20)

and therefore

PΣIO
(LB′

) ⊆
⊆

⋂
j P−1

ΣIO∩ΣT (L(GTc
j)) ∩ PΣIO

(PΣIO∪ΣT
(LIO)).

(21)
By considering the properties of L(GTc

m,j) = L(GTc
m,j), it

follows that

P−1

ΣIO∪ΣT
(L(GTc

j)) ⊃ P−1

ΣIO
(L(GTc

j)) ⊇ LIO. (22)

Since ⋂
j

P−1

ΣIO∪ΣT
(L(GTc

j)) ⊇ LIO (23)

and
PΣIO

(P−1

ΣIO∪ΣT
(L(GIO))) = LIO (24)

it follows that
PΣIO

(LB′

) ⊆ LIO. (25)

Therefore, since LB ⊆ LB′

it follows that

PΣIO
(LB) ⊆ LIO. (26)

(13) and (26) imply together that PΣIO
(LB) ⊆ LIO

Proceedings of the European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009 MoC10.2

1467

Process model
G

P

||

S3L
E

S3L||

IO model
G

IO
Task smodel

G
T

j

TAS
E

TAS

Integral model
G

B

Functional model
G

F

�E

P
IO

PT

Fig. 1. Overview on the different models of a component

C. The functional model

The functional behavior of the model can be described
by the tasks, which depict the operation by collecting a
series of low-level events to one single object. Therefore,
the operation of the process (respecting the specifications of
safety, security and liveliness) can be considered as starting
tasks and waiting for their completion. So the functional
model can be obtained as the projection of the integral model
to the task events.
Definition 11: The functional model is the generator of

the language LF = PΣT (LB) and is defined by the 5-tuple
GF = {QF ,ΣF , ρF , qF

0
, QF

m} where ΣF = ΣT .
Remark Note that, according to Definition 6, Definition

10 and properties of projection, all states of the functional
model which are entry states of transitions corresponding the
confirmation events are marking ones. It depicts the fact that
all tasks correspond to the completion of a given operation.
The following theorem plays an important role.
Theorem 2: The language generated by the parallel com-

position of the functional model and the task models equals
the language generated by the integral model:
P−1

ΣIO∪ΣT
(LF) ∩ (

⋂
j P−1

ΣIO∪ΣT
(L(GT

j))) = LB

Proof: The proof is based on three properties. At
first, it follows from the definition of the task alternation
specification that

P−1

ΣIO∪ΣT
(LF) ⊂ ET (27)

It can be also shown that

P−1

ΣIO∪ΣT
(LF) ∩ (

⋂
j

P−1

ΣIO∪ΣT
(L(GT

j))) ⊆ LB′

(28)

Note that it follows from (27) and (28) that P−1

ΣIO∪ΣT
(LF)∩

(
⋂

j P−1

ΣIO∪ΣT
(L(GT

j))) is a controllable sublanguage of LB′

regarding the specification ET .
Since P−1

Σ1∪Σ2
(K) ⊇ P−1

Σ1
(K) and P−1

Σ
(PΣ(K)) ⊇ K,

by considering Definition 11 it follows that

P−1

ΣIO∪ΣT
(LF) ⊇ LB (29)

However, Definition 10 states that LB is the supremal
controllable sublanguage of LB′

, so

P−1

ΣIO∪ΣT
(LF) ∩ (

⋂
j

P−1

ΣIO∪ΣT
(L(GT

j))) ⊆ LB (30)

It follows from (29) and (30) that

P−1

ΣIO∪ΣT
(LF) ∩ (

⋂
j

P−1

ΣIO∪ΣT
(LT

j)) = LB (31)

The following situation underlines the importance of the
theorem. One can consider the control structure as a dis-
tributed and hierarchical one, where the plant is controlled
by several low-level controllers, each realizing one of the
task models. These low-level controllers have two interfaces:
one for the process with events σL ∈ ΣIO and one for the
high-level controller with σH ∈ ΣT .
The operation of the controller structure can be depicted as

follows. The plant is influenced directly by the low-level con-
trollers, realizing GT

j , and therefore assuring that the closed
loop meets safety, security and liveliness specifications. The
high-level supervisor, influencing the low-level ones, can be
synthesized by using GF as a model. As it has been shown,
the operation of the plant will be the same as using the
conventional way for synthesizing a monolithic controller.

VI. CONCLUSION
Multi-face modeling approach presented in this paper can

serve as the basis of a new framework for the rapid prototyp-
ing of discrete event controller structures. Definition of func-
tional models besides technological ones allows easier con-
troller design supported by a component library. Presented
theorems can guarantee that the supervisor synthesized for
the functional model will fulfil the same requirements that
the supervisor synthesized for the original system, i.e. the
process model. Based on these models a suitable supervisory
control design methodology can be defined.
Future work include the definition of the model library

and the description of the algorithms for automatic code

ACKNOWLEDGEMENTS

This research was partially funded by the Hungarian
Scientific Research Fund under grant OTKA K 71762.

REFERENCES
[1] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.

Boston: Kluwer Academic Publishers, 1999.
[2] K. Wong and W. Wonham, “Hierarchical control of discrete-event

systems,” Discrete Event Dynamic Systems: Theory and Applications.
[3] W. Wonham and P. Ramadge, “Modular supervisory control of discrete

event systems,” pp. 13–30, 1988.
[4] W. Wonham, Notes on Control of Discrete Event Systems. University

of Toronto, 2002.
[5] J. Hopcroft and J. Ulmann, Introduction to Automata Theory, Languages

and Computation. Addison Wesley, 1979.
[6] R. Kumar, V. Garg, and S. Marcus, “On controllability and normality

of discrete event systems,” Systems & Control Letters, vol. 17, pp. 157–
168, 1991.

[7] R. Brandt, V. Garg, R. Kumar, F. Lin, S. Marcus, and W. Wonham, “For-
mulas for calculating supremal controllable and normal sublanguages,”
System & Control Letters, vol. 15, pp. 157–168, 1990.

G. Kovács and L. Piétrac : Multi-Face Modeling for Rapid Prototyping of Discrete Event Control Systems MoC10.2

1468

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

