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Abstract— This paper reports a low-cost online fault detec-
tion approach for supervisory controllers in the framework
of Supervisory Control Theory (SCT). For the cases when
sensors dedicated to fault detection increase significantly the
cost of controllers, or failure events are even impossible to
detect by a direct way, methods based on the well-known
watchdog structures are proposed. To successfully integrate
watchdogs in the SCT framework, their discrete-event model is
defined, and fault-detection techniques proposed in this paper
are based on the extension of controller models previously
designed using conventional supervisory synthesis methods.
Fault-detection strategies are presented for centralized and
distributed supervisory control environments, in the latter case
providing solutions for avoiding problems according to fault
propagation. Proposed techniques give full authority to the
system designer in defining failure handling procedures and
are proved not to influence the operation of the processes when
no fault occurs. Since the extension of the controller models is
defined by a formal and systematic manner, suitable algorithms
based on the presented techniques can be constructed to allow
automatic integration of fault-detection capabilities into existing
controller structures.

I. I NTRODUCTION

The need for dependable and fault-tolerant systems has
arisen in the last decades. In application areas like automotive
and aerospace industry, nuclear technology etc. reliability
and safety is a key issue and these properties have to
be fulfilled regardless to the cost. However, the need for
dependability has also arisen in other industrial or even
consumer electronics products, where financial reasons or
restrictions on the on-market-time limit the use of fault
detection and fault diagnostic technologies. [1]

The theory of discrete event systems provides a suitable
framework for the design of supervisory control structures,
which may be responsible for assuring the safe operation of
sophisticated or large-scale systems. [2] Several propositions
have been presented in the field of fault detection, failure
identification and failure diagnosis for discrete event systems,
see for example, [3], [4], [5], [6]. Although these methods
provide general and theoretically based solutions, they are
mainly not applicable in everyday practice due to their high
computational needs.

This paper reports a practice-oriented, low-cost online
fault detection approach using the well-known watchdog
structures. Although watchdogs are used for decades to
monitor even hardly observable failures, their models and the
related fault detection methods have not yet been formalized

in the discrete event framework. Nevertheless, system engi-
neers often integrate watchdog based fault detection solutions
into their controller structures, but they can use only ad-hoc,
informal, and therefore undependable design methods.

We introduce the discrete-event models of the watchdog
to allow their integration into the framework of Supervisory
Control Theory (SCT). Some formalized and systematic
procedures will be presented that allow the extension of
existing controller models in order to implement watchdog-
based fault detection strategies in centralized and distributed
control environments. Due to their formal and systematic
properties, these procedures can be easily automated by
suitable algorithms to help the integration of fault-detection
algorithms. Moreover, the presented methods do not restrict
the failure handling procedures, so they allow high flexibility
for the system designer.

Structures and methods presented in this paper are not
restricted to the formal framework of SCT. In industrial
practice, supervisory controller structures are often designed
in an informal, intuitive way using finite state machine-
based modeling tools (e.g. Grafects). Although the design
procedure excludes the use of formal methods, the proposed
fault-detection methods and structures can be used, and by
their automatic integration the developement cycle can be
accelerated. Moreover, since these controllers are often tested
on simulated or physical processes to check if they meet the
proposed requirements, watchdogs can be also used to guard
the plant against controller design-related malfunctions(e.g.
infinite cycles) during the prototyping phase.

The remaining part of the paper is organized as follows.
Section II gives a short overview on SCT and on the
supervisory control design procedure. In Section III the
principles of watchdog-based fault detection techniques will
be introduced. Sections IV and V present the proposed fault-
detection strategies for centralized and distributed control
architectures, respectively. Section VI concludes the paper.

II. PRELIMINARIES

We present here only some fundamental principles and
notations of SCT in order to keep the paper a selfcontained
as possible. For more details, the reader may refer to [7].

The discrete-event systemG is described by the 5-tuple
G = {QG,ΣG, ρG, qG

0
, QG

M} with QG as its state set,ΣG as
its event set,ρG : QG × ΣG → QG as its partial transition
function, qG

0
as its initial state andQG

M as the set of its



marking states. The event setΣG can be divided into the
distinct sets of controllable and uncontrollable events sothat
ΣG = ΣG

C ∪ΣG
U whereΣG

C ∩ΣG
U = ∅. The notation∃ρ(q, σ)

means that there exists a transition associated with the event
σ ∈ ΣG leaving the stateq ∈ QG. The language generated
by G is denoted byL(G). The constraints to be respected by
the supervised system are given by the specification modeled
by an automaton denoted byE.

The goal of supervisory synthesis is to define a su-
pervisor which can restrict the operation of the system
to meet the constraints of the specifications, so that the
supervisorS is a function S : L(G) → Γ defined by
Γ = {γ = PWR(Σ) | γ ⊇ ΣU} where γ represents the
set of events authorised byS and PWR(Σ) is the set of
all subsets (the power set) ofΣ. If the specifications are
controllable, the automatonS/G describing the supervised
system is the product ofG andE. In other cases the maximal
permissive sublanguage can be found, which allows the
greatest possible set of controllable events, see [8] and [9].

The controller model is also described by a 5-tuple
C = {Q,Σ, ρ, q0, QM}, possibly extended by a control map
Θ : Q×ΣC → {0, 1}. The controllerC is constructed based
on the automaton representing the supervised system and
the supervisor itself, and gives the automaton model of the
controller with the events to be enabled or disabled in each
of its states defined by the control map.

Finite state machines are illustrated by transition diagrams
in this paper (see, for example, Fig. 1). An arrow entering
a particular state denotes the initial state, while an arrow
leaving a particular state but not leading to any other state
denotes a marking state. A tick on an arrow represents that
the event associated to the given transition is controllable.

Formal methods of supervisory controller synthesis lie on
the principles above, but are placed in a more complex,
general control design framework. We should consider that
the objective of the design process is to realize a controller,
i.e. implement it using a suitable hardware platform, ensuring
that the supervised process meets the proposed requirements.

Controller design is based on the models of the process
and the requirements, given commonly in the form of finite
state machines. The supervisor is synthesized upon these
models, and then a controller model, which is a represen-
tation of the supervised system, is derived. The controller
model is then implemented on a suitable platform, and it
is tested along the process to verify whether the supervised
system meets the requirements.

Our aim is to present methods to implement watchdog-
based fault detection techniques by extending previously
designed controller models. In this paper, we shall assume
that the controller model has been previously designed and
described by an FSM.

III. PRINCIPLES OF WATCHDOG-BASED FAULT

DETECTION

Watchdog structures are commonly used for fault detection
in electronic controller devices (see, for example, [10]).
Watchdogs are used to signal if a given operation (e.g.

displacement of a workpiece) is not finished in a predefined
time period, therefore the presence of a failure can be
assumed.

The operation of the watchdog can be pictured as follows.
The watchdog is started by the controller before executing
a given task. Then, it starts counting and when reaches a
predefined final value, it outputs an alarm signal. If the
controller resets the watchdog before reaching the final value,
the alarm signal is not generated.

Among their simplicity, a main advantage of watchdogs
compared to other fault-detection techniques is that they do
not need dedicated sensors for unrevealing the faults. For
example, using a watchdog the failure of a conveyor line
can be assumed if no workpiece arrives at a given location
in a time period, so no additional sensor measuring the
speed of the conveyor or the force of the motor driving it
should be added, and therefore the cost of the controller
implementation can be reduced.

Depending on the architecture, watchdogs can be im-
plemented as software routines or hardware components.
The latter one, used in fault-critical applications, can be
composed of simple logical components, such as a counter, a
memory block for storing the final value, a comparator, and
an alarm logic to maintain the alarm signal after reaching
the final value.

In order to define formal methods for implementing
watchdog-based fault detection in the SCT framework, at
first some notations should be clarified.

Roughly speaking, a task is a part of the supervised oper-
ation of the plant, which can be clearly distinguished from
other activities. A task is started by a suitable, controllable
event, and its successful completion is indicated by one or
more confirmation events. For example, a task can be the
displacement of a workpiece by a robot arm. In this case,
the task is started by downloading the new coordinates to
the controller of the robot arm, and the successful completion
can be indicated by a sensor at the target position. Notice
that the confirmation event is not necessarily generated by
the subsystem the given task is implemented in.

Definition 1: A task Ti = {QT
i ,ΣT

i , ρT
i , qT

i,0, Q
T
i,M} is a

suitably chosen subsystem of an existing controller model:
Ti ⊆ C, with QT

i ⊆ Q, ΣT
i ⊆ Σ, qT

i,0 ∈ QT
i , QT

i,M ⊂ QT
i .

The task is a set of continuous trajectories, withqT
i,0 as its

first state, so that∀q ∈ QT
i : ∃t ∈ ΣT

i

∗
, ρ(qT

i,0, t) = q.
The last states of the trajectory are in the setQT

i,M , so that
∀qi,M ∈ QT

i,M ,∀t ∈ Σ∗ : ρ(qi,M , t) /∈ QT
i .

Definition 2: The set of the tasks associated with a system
will be denoted byT = {T1, T2, . . . , Tn}, wheren is the
number of the tasks associated to the given controller model.
It is assumed that the tasks are not overlapping each other,
so ρT

i ∩ ρT
j = ∅ ∀i, j ≤ n, i 6= j.

Definition 3: If ∃1σ
∗ ∈ Σi,C so that∃ρ(qi,0, σ) if and

only if σ = σ∗, then the controllable eventσ∗ will be referred
as the command event of the taskTi and will be denoted by
σCMD

i .1

1∃1 stands for ’there exists a unique’



Definition 4: The events indicating the successful comple-
tion of the taskTi will be denoted byσCONF

i,j ∈ ΣT
i in the

sequel and will be collected to the set of confirmation events
ΣCONF

i = {σCONF
i,1 , σCONF

i,2 , . . . σCONF
i,n }.

Remark:The selection of confirmation events is an intu-
itive task of the system designer.

Definition 5: The taskTi is said to be possible to put
under the guard of the watchdog if and only if

1) ∃σCMD
i and

2) ∃ρ(q, σ), q ∈ QT
i , σ ∈ ΣCONF

i ⇔ ρ(q, σ) ∈ QT
i,M .

Remark:In the followings, all tasks should be assumed to
be possible to put under the guard of the watchdog.

Faults are handled by the so-called alarm handling pro-
cedures, which are executed upon an alarm signaled by the
watchdog. However their definition is left entirely to the sys-
tem designer, providing full flexibility for their realization,
some assumptions have to be made according to them.

Depending the nature of the failure, i.e. during which task
it has occured, various alarm handling procedures can be
defined. However, it is possible that the same failure handling
is required for different tasks, e.g. the intervention of a
human operator is needed in several cases. In order to allow
watchdogs to start alarm handling procedures according
to the given task, the first state of each alarm handling
procedure and their association to the tasks should be clearly
defined.

Definition 6: The alarm handling stateqAH,i is the first
state of theith alarm handling procedure of the actual
controller model. Alarm handling states are collected to the
setQAH = {qAH,1, qAH,2 . . . qAH,n}.

Definition 7: The function ξ : T → QAH realize the
association between tasks and alarm handling procedures,
so that the alarm handling state associated with the taskTi

is q = ξ(Ti), q ∈ QAH

The integration of watchdogs into existing supervisory
control structures is built up from three main steps, which
have to be carried out for all the tasks.

At first, the task to be put under the guard of the watch-
dog should be selected. An ideal candidate can be clearly
distinguished from other activities of the controller, i.e. it
has well-defined command and confirmation events.

The second step is the definition of the alarm handling
procedure according to the given task. It should be designed
intuitively by the system designer, and should ensure safe
operation or the execution of an emergency shutdown. It is
recommended, however not compulsory, to reset the watch-
dog at the end of the alarm handling procedure.

The third step is the extension of the controller model(s)
in order to incorporate watchdog-based fault detection ca-
pabilities. The methods of extension will be discussed in
the following sections, where it will be assumed that the
controller models are already containing the alarm handling
procedures.

Fig. 1. Discrete-event model of the watchdog

IV. FAULT DETECTION IN CENTRALIZED CONTROL

ENVIRONMENT

A. Discrete event model of the watchdog

To implement watchdog-based fault detection methods in
the SCT framework, at first the discrete-event model of the
watchdog should be defined. The operation of the watchdog
in a discrete event framework can be captured as follows.
It can operate in three states, namelyIdle (q0), where
the counter, left unmodeled at this level of abstraction, is
stopped,Running (q1), where the counter is running but
the final value has not yet reached, andAlarm (q2), where
the alarm signal is issued. The transitions between these
three states can be associated to the events of starting the
watchdog (START), stopping it (STOP), the issue of the alarm
event when reaching the final value (ALARM ) and the reset of
the watchdog (RESET). All of these events are controllable,
except theALARM event, which is generated by the watchdog
itself. The discrete-event model of the watchdog is given by
Fig. 1, while its evolution is illustrated in Fig. 2.

B. Extension of the controller model

In order to implement watchdog-based fault detection
methods in existing supervisory control structures, the model
of the controller should be extended. In the followings, it
shall be assumed that failure handling procedures have been
already defined and integrated to the controller model by the

Fig. 2. Evolution of the watchdog



Fig. 3. Extension of the controller model in centralized environment

system designer, as well as their associations to the tasks to
be put under the guard of the watchdog.

The controller model is initially described by a 5-tuple
C = {Q,Σ, ρ, q0, QM}, possibly extended by a control
map Θ : Q × ΣC → {0, 1}, which will be modified,
resulting in extended model(s),C ′ = {Q′,Σ′, ρ′, q′

0
, Q′

M}
and, if Θ exists,Θ′ : Q′ × Σ′

C → {0, 1}. The aim of the
extension is to put the taskTi = {QT

i ,ΣT
i , ρT

i , qT
i,0, Q

T
i,M}

under the guard of the watchdog. To do so, the watchdog
should be started before executing the task, and stopped
after its successful completion. The handling of alarm events
should also be guaranteed by starting the appropriate alarm
handling procedure. The extension is defined formally by the
followings.

A new state associated toqT
i,0, namelyqT

i,0

′
and new states

associated to each stateqT
i,j ∈ QT

i,M , namelyqT
i,j

′
∈ QT

i,M

′

so that |QT
i,m| = |QT

i,M

′
| should be added to the state set

of the controller2: Q′ = Q ∪ {qi,0
′} ∪ QT

i,M

′
. The events of

the watchdog should also be added to the event set of the
controller model:Σ′ = Σ∪{START, STOP, RESET, ALARM }.
Then, the partial transition function of the controller should
be extended toρ′(q, σ) for ∀q ∈ Q′ and ∀σ ∈ Σ′ by the
followings.

ρ′(q, σ) =











































ρ(q, σ) ∀q ∈ Q\ QT
i,M ,∀σ ∈ Σ

ρ(qT
i,j , σ) ∀qT

i,j

′
∈ Q′

M ,∀σ ∈ Σ

qT
i,j

′
∀qT

i,j ∈ QM ,∀σ = STOP

ξ(Ti) ∀q ∈ QT
i

′
\QT

i,M

′
\qT

i,0, σ = ALARM

qT
i,0

′
iff ρ(q, σ) = qT

i,0

qT
i,0 iff q = qi,0

′, σ = START

undefined otherwise

The extension of the controller model is illustrated in
Fig. 3. The modification of the control map is shown by
Table I.

Proposition 1: If no failure is signaled by the watchdog,
i.e. no ALARM event is generated, the plantG acts the
same under the supervision of the original and the extended
controller by the mean that it generates the same language,
so thatPΣG(L(S′/G′)) = L(S/G).

2|Q| denotes the cardinality of the set Q

TABLE I

MODIFICATION OF THE CONTROL MAP

START STOP σCMD
i

ΣREST
1

qT
i,0

0 0 1 ∗2

qT
i,0

′

1 0 0 Θ(qT
i,0

, σ)

qT
i,j

∈ QT
i,M

0 1 0

{

0 if ∃ρ(qT
i,j

, σ)

Θ(qT
i,j

, σ) ow3

qT
i,j

′

∈ QT
i,M

′

0 0 0 Θ(qT
i,j

, σ)

q ∈ QREST
4 0 0 ∗ ∗

1 ΣREST = Σ′

C
\ {START, STOP, σCMD

i
}

2 * stands for unchanged, i.e.Θ′(q, σ) = Θ(q, σ)
3 ow = otherwise
4 QREST = Q′ \ {{qT

i,0
, qT

i,0

′

} ∪ QT
i,m

∪ QT
i,m

′

}

Proof: Let the language of the taskTi denoted by
L(Ti) = {s ∈ Σ∗|ρ(qT

i,0, s) ∈ QT
i }, while the set of

strings leading to one of the final statesqT
i,M ∈ QT

i,M

of the task byLM (Ti) = {s ∈ Σ∗|ρ(qT
i,0, s) ∈ QT

i }.
Therefore, the language generated by the supervised plant is
L(S/G) = {t.{L(Ti).u|t, u ∈ Σ∗,∃ρ(q0, t.L(Ti).u)}.

Let the resulting system of the extension, composed as the
synchronous product of the plant and the watchdog, denoted
by G′ = G‖WD. Since the event sets ofG and WD
are distinct, i.e.ΣG ∩ {START, STOP, ALARM , RESET} = ∅,
the language generated by the plantG is the natural projec-
tion of the language generated by the extended system to the
event set ofG: PΣG(L(S′/G′)) = PΣG(t′.L(T ′

i ).u
′).

According to the properties of the natural projection,
PΣG(t′.L(T ′

i ).u
′) = PΣG(t′).PΣG(L′(Ti)).PΣG(u′). Due to

its definition, the extension effects only the language of the
task, sot′ = t and u′ = u, thereforePΣG(t′) = t and
PΣG(u′) = u. Thus,PΣG(L(S′/G′)) = t.PΣG(L(T ′

i )).u.

The language of the extended taskT ′
i is defined as follows:

L(T ′
i )= START.L(Ti)

∪START.LM (Ti).STOP

∪{START.L(Ti)\{{ǫ} ∪ LM (Ti)}}.ALARM .v
|v ∈ Σ∗ and∃ρ(ξ(Ti), v)



Since we assume that no fault occurs, it can be restricted
to LNF(T ′

i ) = START.L(Ti) ∪ START.LM (Ti).STOP, so

PΣG(LNF(T ′
i )) = PΣG(START.L(Ti))

∪PΣG(START.LM (Ti).STOP)

Therefore,PΣG(LNF(L(T ′
i )) = L(Ti), so

PΣG(L(S′/G′))=t.PΣG(LNF(T ′
i )).u = t.L(Ti).u =

=L(S/G)

Remark: If we assume that any fault occurs, no such
proposition can be made. Since a fault triggers theALARM

event, the system will execute an alarm handling procedure,
which usually differs significantly from the normal operation
of the system.

V. FAULT DETECTION IN DISTRIBUTED ENVIRONMENT

When dealing with large-scale and more sophisticated sys-
tems, one of the frequently used solutions to avoid the state-
explosion problem is to use distributed control structures
(see, for example, [11]). However, a malfunction in a given
subsystem can cause the failure of other subsystem(s), so
fault detection in distributed environments has a paramount
importance.

The common situation is that a subsystem,G2, needs
some resources provided by a remote subsystemG1 for its
operation. Assume that there is a watchdog associated to
G1, so its controller,C1 is informed about the faults ofG1.
However, since a fault inG1 can effect the operation ofG2,
even causing a dangerous situation, it is vital to provide a
possibility forC2 to check whether a failure has occurred in
the remote subsystem, namelyG1.

In order to allow controllers to gain information about
the failures of remote subsystems, a suitable communication
should be found to ensure the information exchange between
the controller and the watchdog associated to the remote sub-
system. The query-response philosophy, illustrated in Fig. 4
provides a low-cost solution, and can be implemented by
carrying out a few extensions on the model of the watchdog,
needing no additional components.

A. Extended model of the watchdog

To implement communication functions, the event set of
the watchdog should be extended by the controllable query
and uncontrollable response events,QUERY, R IDLE and
R ALARM . The query event is used by the controllers to sign
their request for information, while the response events are

C
1

G
1

WD

C
2

G
2

?

Fig. 4. Watchdog in distributed environment

Fig. 5. Communication enabled extended model of the watchdog

generated by the watchdog reporting its actual state, indicat-
ing whether a fault has occurred in the guarded subsystem.
Note that when the watchdog is in itsRunning state, there
is no reliable information available on the functionality of the
guarded subsystem. It can be stopped in the next moment,
indicating no failure, or it can also pass to itsAlarm state,
indicating the presence of a fault.

The extended model of the watchdog is depicted in Fig. 5.
The model is extended by three new, query states, namely
Idle q (q3), Running q (q4) and Alarm q (q5), which
are reached when the watchdog receives a query in the
corresponding state. We assume that the implementation of
the watchdog is such that inIdle q andAlarm q states, the
corresponding response events are generated instantaneously,
leading the watchdog back to theIdle and Alarm states,
respectively. Note that, according to the principle described
in the previous paragraph, no response event is generated
immediately when a query is received in theRunning
state. In that case, the corresponding response events follow
the STOP or ALARM events. AnR IDLE response event is
generated, even if the watchdog has not yet been queried,
upon the reset, which feature will be used in the sequel.

B. Wait-for-OK strategy

It is a common situation that a subsystem needs some
resources provided by an other one to execute a task, so
the given operation can not be carried out when the other
subsystem is failed. Likely, there are cases when starting a
task when an other subsystem is down can result in damage
or even injuries. For example, when two conveyors are
situated one following the other, the first one should not
be started when the second one is down in order to avoid
the stuck of workpieces, and therefore damage of valuable



material.
For these situations the Wait-for-OK strategy can be

used. Let us assume thatG2 needs the resources ofG1,
which is under the guard of a watchdog, for executing a
given task. Before starting the task,C2 should query the
watchdog associated toG1, and continue its operation only
if the watchdog is found in itsIdle state, i.e. theR IDLE

response event is generated. If theR ALARM response event
is generated, indicating that a failure has occurred inG1, the
only solution forC2 is to suspend its operation and wait for
the handling of the fault. Since the eventR IDLE is generated
upon the reset of the watchdog,G2 can continue its operation
after the handling of the failure.

If it has not yet been done, at first the controller model
of the remote subsystem,C1 should be extended by fol-
lowing the method presented in Section IV-B in order to
incorporate watchdog-based fault detection functions. Let
C2 = {Q2,Σ2, ρ2, q2,0, Q2,M} denote the controller ofG2

and C ′
2

= {Q′
2
,Σ′

2
, ρ′

2
, q′

2,0, Q2,M} its extension. The state
of the controller from where the given operation is started
will be denoted byqj . To use the wait-for-OK strategy,
two new states,q′j and q′′j should be added to the state
set of C2, so Q′

2
= Q2 ∪ {q′j , q

′′
j }, while the event set

should be extended by theQUERY and R IDLE events, so
Σ′

2
= Σ2 ∪{QUERY,R IDLE}. The transition function should

be extended toρ′
2

for ∀q ∈ Q′
2

and ∀σ ∈ Σ′
2

by the
followings:

ρ′
2
(q, σ) =























ρ2(q, σ) ∀q ∈ Q\{qj},∀σ ∈ Σ2

q′j iff q = qj , σ = QUERY

q′′j iff q = q′jσ = R IDLE

ρ2(qj , σ) ∀σ ∈ Σ2, q = q′′j
undefined otherwise

For the definition of the initial state ofC ′
2
, the following

rule should be applied:

q′
2,0 =

{

q′j if q2,0 = qj

q2,0 otherwise

The extension of the controller is illustrated by Fig. 6,
while the modification of the control map is given by Table
II.

Proposition 2: Using the Wait-for-OK strategy, if no fail-
ure is detected by the watchdog, i.e. noALARM event is
generated, the plantsG1 and G2 act the same under the
supervision of the original and extended controllers by the
mean that the languages they generate are not effected by
the extensions, so thatPΣG

1

(L(S′
1
/G′

1
)) = L(S1/G1) and

PΣG

2

(L(S′
2
/G′

2
)) = L(S2/G2).

Proof: According to Proposition 1, the language
generated byG1 is not effected by the extension, so
PΣG

1

(L(S′
1
/G′

1
)) = L(S1/G1).

The equivalence of the languages generated byG2 is
straightforward.

TABLE II

MODIFICATION OF THE CONTROL MAP IN CASE OF USING THE

WAIT–FOR–OK STRATEGY

QUERY σ ∈ Σ′

2,C
\ {QUERY }

qj 0 Θ2(qj , σ)

q′
j

1

{

0 if ∃ρ(qj , σ)
Θ2(qj , σ) otherwise

q′′
j

0

{

0 if ∃ρ(qj , σ)
Θ2(qj , σ) otherwise

q ∈ QREST
1 0 Θ2(q, σ)

1 QREST = Q2
′ \ {qj , q′

j
, q′′

j
}

C. Multimodal strategy

More sophisticated subsystems, initially using some re-
sources provided by remote components, are often capable
of switching to a degraded mode, in which they can continue
their operation without those resources. For example, a robot
arm, placing workpieces on a conveyor, can depose the pieces
to a temporary buffer in case of the failure of the conveyor.

When dealing with subsystems having more operational
modes, the approach proposed by Kamach will be used
[12], [13]. Identical process and specification models are
constructed for each operational mode, based on which
supervisors are synthesized. Controller models include a so-
called inactive state (qIA ), to where the controller model
passes enters upon commuting to another operational mode.
The newly activated controller model is activated by passing
from its inactive state to its starting state (qS).

Like in the case of the Wait-for-OK strategy, the controller
of G2 shall query the watchdog associated toG1 before
starting the operation ofG2 needing the resources provided
by G1. If the watchdog is found to be in itsAlarm state,
the subsystem should be switched to its degraded mode, in
which it can continue its operation without the resources
provided byG1. In the degraded mode,C2 should query the
watchdog in every duty cycle and switch back to nominal
mode immediately, if the failure has been handled, i.e. the
watchdog associated toG1 is found to be in itsIdle state.

Let us assume again thatG1 is equipped with a watch-
dog, andC1 has been extended to incorporate watchdog-
based fault detection capabilities. The nominal mode, need-
ing resources provided byG1, will be denoted byM1,

Fig. 6. Extension of the controller model using the Wait-for-OK strategy
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while the degraded mode will be referred to asM2.
Controller models designed for the nominal and degraded
modes are given byC1
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Fig. 7. Extension of the controller models using the multimodalstrategy
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The control mapΘ2
2

should be extended toΘ2
2

′
according

to Table IV. The extension of the controller models is
illustrated by Figure 7.

Proposition 3: Using the multimodal strategy, if no fail-
ure is detected by the watchdog, i.e. noALARM event is
generated, the processesG1 andG2 act the same under the
supervision of the original and the extended controllers, by
the mean that the languages they generate are not effected
by the extensions, soPΣG

1

(L(S′
1
/G′

1
)) = L(S1/G1) and

PΣG

2

(L(S′
2
/G′

2
)) = L(S2/G2) for both operational modes.

The proof of the first part is evident, while the proof of
the second part is analogous to the method used in case of
Proposition 1.

VI. CONCLUSION

The approach presented in this paper places well-known
watchdog structures in the SCT framework. The presented
methods allow the extension of previously designed con-
trollers to integrate watchdog-based fault detection tech-
niques both in centralized and distributed supervisory control
environments.

The definition of discrete-event models of the watchdog
and the formal description of the extension methods, along
with their systematic properties, allow the implementation of
algorithms. This allow formal integration of fault detection
capabilities that helps system designers to realize low-cost
fault detection methods in a systematic way.

The integration of the presented methods into rapid control
prototyping environments, allowing simple modeling, sim-
ulation and implementation on various hardware platforms
may be the next step towards the use of the concept in
industrial applications. Problems of observability and diag-
nosability may be also studied using formalism provided by
the SCT framework.
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