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Abstract— This paper deals with operating mode
management of Discrete Event Systems (DES) and
this contribution is based on Supervisory Control
Theory (SCT). Our aim is to extend SCT by intro-
ducing a mechanism for managing different operat-
ing modes for the controlled system. An operating
mode corresponds to a specific system structure
(engagement or disengagement of different system
components) and specified tasks. Mode management
will consist in controlling switching between modes
with a view to handling models of reasonable size.
Our approach is a multi-model one and involves
representing a complex system by a set of simple
automata models, each of which describes the system
in a given operating mode. The adopted approach
assumes that only one attempted operating mode
is activated at a time, whilst other modes must be
deactivated. The switching problem may be defined
as finding compatible states, when controlled system
behavior switches from one operating mode to an-
other. The major contribution of this paper is the
avoidance of switching from states (called forbidden
states) with ghost compatible states in the selected
operating mode. These states are called ghost because
their existence would potentially violate a defined
selected mode specification.

I. INTRODUCTION

Operating mode management for DES remains
a challenging problem and is the subject of con-
siderable research [1], [2], [3], [4], [8], [15]. Ex-
isting work on operating mode management for
DES focuses on problems of characterisation and

switching between modes [1], [2]. However these
approaches are not based on any formal models
and they possess neither any validation mecha-
nism of possible alternations (enabling and validity
of switching between modes) nor any validation
mechanism of deadlock research. To overcome
these drawbacks in the Dynamic Hybrid Systems
context , most works suggest novel methodology
for synthesizing switching controllers and define
the synthesis problem as finding the condition, on
which a controller should switch system behavior
from one mode to another to avoid a set of bad
states [3]. [15] presents a framework for designing
stable control schemes for systems whose dynamic
equations change as they evolve in several operat-
ing modes. An appealing alternative is switching
control schemes. Here, a different controller is
applied to each operating mode and the stability
of the overall system is ensured through a suit-
able switching scheme. In the approach of [4], a
supervised control structure integrating operating
mode detection and an active accommodation loop
is designed. Active control accommodation is based
on indirect switching control because it depends on
detection of the actual process model.
Based on SCT (initiated by Ramadge and Wonham
[6]), the approaches proposed by [8] and [7] apply
the macro-action concept; operating mode manage-
ment is ensured by activation of only one mode at



any one time. Conscious of the advantages offered
by [8] and [7], we extend these approaches to take
the following statements into account.

1) A process comprises several components and
not all components are used in every operat-
ing mode.

2) Specifications defined for each model can be
conflicting, when switching from one mode
to another (unlike the approach [5] in which
all objectives must be concurrently achieved)
and this may cause system blocking.

We have introduced a framework for modeling
and switching, which takes into account the above
statements [13]. The models considered feature
processes and specifications, and more specifically,
components engaged in a given operating mode.
The multi-model approach involves representing a
complex system by several simple models (each
process model is associated with a specification
model in a given operating mode). Each model
is a partial description of the system in a given
operating mode. Initially, only one model is ac-
tivated and the nominal operating mode is gen-
erally assumed. All other modes are deactivated.
Common component engagements are possible in
each considered mode and the concept of tracking
is introduced. This means maintaining a trace of
events that have occurred for the common com-
ponents. We have therefore extended each consid-
ered process and specification model by adding
a specific state called the inactive state. The set
of the events making it possible to switch from
one model (process and specification) to another is
called the set of the switching events. The difficulty
of such an approach resides both in the building of
extended models, which characterise different oper-
ating modes and in defining a switching mechanism
allowing us to track explicitly the behavior of each
model. This switching mechanism, characterized
by information channels, is based on a set of traces
generated in the model previously deactivated, to
determine a suitable starting or recovery state for
the recently activated model. Our approach applies
to the mechanism for switching between different

process and specification models, which have been
extended to determine their compatible connection
states. Finding the states from which these models
need to be activated, whilst ensuring adequacy
between current process dynamics and control de-
cisions, has solved the problem of the mechanism
for switching between specification models. In this
paper, we extend the approach fof [13], [14] by
considering a problem of switching from states
with potentially ghost compatible connection states
in the selected operating mode.
In Section II, switching between modes is ensured
by tracking model Si/Gi to ensure compatibility
between the current state and all previous mode
changes.
Intuitively, a state q in a model Si/Gi is said to
be compatible with a state q′ in a model Sj/Gj ,
if the set of the common components between the
two modes i and j have the same activity in the
two considered states and the controlled process
behavior Si/Gi (resp. Sj/Gj) corresponds to a
defined desired language of mode i (resp. mode
j).
Based on Kumar’s algorithm [12], we thus develop
an algorithm, which allows forbidden and prefor-
bidden states to be avoided.

II. MULTI-MODEL APPROACH

A real system involves a set of nominal and
degraded modes. We adopt the following notation
to deal with this. The set of operating modes is
denoted by I = {1, 2, . . . , n}, where n ∈ N

and n ≥ 2. By convention, we assume initially
that the activated mode is mode 1. For each op-
erating mode i, we associate an automaton model
Gi = (Qi, Σi, δi, qi0, Qim) coupled by its owen
supervisor, the set Σ′ of switching events is defined
as follows:

⋃n

i,j,i6=j{αij}, where αij represents the
event ensuring switching from mode i to mode j.
These multiple switching events mean that several
switchings are possible: switching from mode 1

to mode 2, switching from mode 1 to i, from
mode 2 to k, etc. These switchings must induce
a trace memorization step because of common
component engagement. Let us consider a case in



which switching takes place. from mode i to mode
j, then from mode j to mode k. In this case,
we have to memorize controlled process Si/Gi

history in mode i prior to initial switching, then
controlled process Sj/Gj history in mode j prior to
the second switching. All these history recordings
are required to determine the starting states in
each mode (i.e. in each state of process G and
specification S engaged in that mode) to which
switching leads. These recordings are performed
by the information channel denoted by πij (Figure
1), where:
Definition 1

Let πij : Σ∗
i −→ Σ∗

j such that ∀σ ∈ Σi

and ∀s ∈ Σ∗
i :

πij(ε) = ε

πij(sσ) =

{

πij(s)σ if σ ∈ Σi ∩ Σj

πij(s) if σ ∈ Σi \ Σj

This projection function definition restricts
neither alphabet Σi nor alphabet Σj . In the
particular case in which Σj ⊆ Σi, this function
corresponds to the canonical projection used
conventionally in SCT [9], [10], [11]. This
function “erases” effectively from a string s

those events σ that are not included in the set of
common events Σi ∩ Σj . This allows the behavior
of common components only to be tracked.
In Sj/Gj , projection πij is used to identify the
output states of intersection components of Si/Gi,
when αij occurs.
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Fig. 1. Exchanges of necessary informations for management
of modes

Formally, the set of mode n starting is given
in the form (q, x), where q is the starting process
model state that will be given by proposition 1. x

is the starting specification model state that will
be given by proposition 2. For more details, the
reader could refer to [13].

Proposition 1

Let models G1, G2,...,Gn characterize the dynamic

process in each operating mode.

1) Determine a partial function C, defining pos-

sible i − to − j switchings in C, if and only

if there is a switching from Si/Gi to Sj/Gj .

2) I = {1}. I represents the set of mode

indices from which switching events will be

considered events, starting from the initial

mode.

3) While I 6= {} do:

a) L = {}. L is a temporary set al-

lowing determination of modes indices

from which switchings with the follow-

ing step will be considered.

b) For each i ∈ I: let Li be the set of

modes such that, for all j in Li, the

i − to − j switching in C.

i) For each Sj/Gj such that j ∈ Li:

A) Determine the set of

starting states by applying:

δj,ext(qjin, αij) =

δj(qj0, πij(Kqq′ ))1 (∀ s ∈ Kqq′ ,

αij ∈ follow(s)2). This needs

to be performed for all Kqq′

languages. There are several

possible q and q′ states.

B) C = C − {i → j},

i → j represent switching from

mode i to mode j.

ii) L = (L ∪ Li) ∩ dom(C)3

c) do I = L �

The above proposition adopts formally the state
from which the model Gj (j ∈ {1, 2, . . . , n})
will be activated (the starting state). The following

1Kqq′ is the language containing all the sequences with
starting state q of model Si/Gi as origin state and a final state
like the starting state q′ of this model

2Denote by follow(s) the set of events which follow the
sequence of events s

3dom(C) represent the field of function C i.e., the set of the
indices i such that i → j belongs to C.



proposition establishes the switching mechanism
between specification models by searching the
states from which these models must be activated,
whilst ensuring adequacy between current process
dynamics and control decisions.
Adopting the following notations:

Σ(q): represents the set of generated process
events from state q

Σa(x): represents the set of enabled events
from specification state x.

Re(x, S): are the specification states reachable
from state x

Re(q, G): are the process states accessible from
state q.

Proposition 2

Let ql, qk, ..., qn be the starting process Gi states.

1) Determine for each starting state qi, the

desired language Kqi
elaborated from this

state.

Do H = X . Initially H is the set of specifi-

cation Si states.

2) For each qi do:

a) Calculate Σ(qi) ∩ Kqi
. This represents

the set of process events generated from

state qi and belonging to desired lan-

guage Kqi
.

b) For each specification state x ∈ H do:

i) Calculate Σa(x).

ii) Calculate Σa(x)∩Σ(qi). This is the

set of process events generated from

state qi and enabled from specifica-

tion state x.

iii) If Σ(qi)∩Kqi
6= Σa(x)∩Σ(qi) then

H = H − {x}. H − {x} is the set

H derived of all states x, which do

not check the condition.

iv) While card(H) 4 6= 1 do:

A) Calculate Re(x, S).

B) Calculate Re(qi, Gi).

C) If for all x′ ∈ Re(x, S) and

for all q′ ∈ Re(qi, Gi), there is

an events sequence that checks

δi(qi, s) = q′ and ξi(x, s) =

4card(H) represents the number of elements in H

x′, such that sΣ(qi) ∩ Kqi
6=

s(Σa(x)∩Σ(qi)) then H = H−

{x}.

v) State x checking that card(H) =

1 is consequently unique compat-

ible starting state of specification

model. �

A. Complete Definition Of Siext/Giext

The previously established propositions makes
it possible to complete building the extended
controlled process for each operating mode i.
In the following, we define in formal terms
wide models (Siext/Giext) for each operating
mode i: the extended controlled process model
for each operating mode i ∈ I is given by
automaton model Siext/Giext defined formally
by: Siext/Giext = (Xiext × Qiext, Σiext,

ξiext × δiext, (xi0ext, qi0ext), Ximext ×

Qimext) in which:
• Xiext × Qiext = Xi × Qi ∪ (xiin, qiin),
• Σiext = Σi ∪Σ′

i where Σ′
i is the set of events

allowing to leaving or returning to mode i,

• (xi0ext, qi0ext) =

{

(xi0, qi0) if i = 1

(xiin, qiin) if i 6= 1
• Ximext × Qimext = Xim × Qim,
• extended transition function ξiext × δiext is

given as follows:
1) ∀(x, q) ∈ Xi × Qi and ∀σ ∈ Σi if

ξi × δi((x, q), σ) exists (i.e. ξi(x, σ)

exists and δi(q, σ) exists) then:
ξiext × δiext((x, q), σ) := ξi ×

δi((x, q), σ)

2) all other transitions will be determined
by using the proposition 1 and proposi-
tion 2.

III. FORBIDDEN COMPATIBLE STATES

In this section, we study the problem of
switching from states in which compatible states
in the selected mode are ghost (these state
are called ghost, because their existence would
potentially violate the defined selected mode
specification). For the sake of brevity, a controlled
process state will be denoted by y. To ensure better



understanding and uphold intuitively the concept,
only 2 modes will be considered in the following
section. As denoted in the previous section, each
operating mode is represented by a process model
assigned with a specification model. We recall
that our contribution above is an algorithm which
generates a set of compatible connection states
between modes. Specifically, we have shown that
if we leave controlled process Si/Gi from a state
y, we must thereby activate the controlled process
Sj/Gj from a state y′, such that y′ is compatible
with y. However, the problem is what will happen
when state y′ is ghost in the controlled process
Sj/Gj?.
To grasp our proposition, let us consider the
following example.
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Fig. 2. example of application

Assuming that initially only mode 1 is activated,

so from y10, occurrence of event σ1 leads S1/G1 to

state y1, in which switching event α12 is possible.

Switching event α12 can occur in several states

of model S1/G1: y1, y2, y4 and yn. When this

event occurs, model S1ext/G1ext enters state y1in

(proposition 1 and 2). On the other hand, the set

of compatible connection states of y1 and y2 in

mode 2 are assumed to be y20 and y′
2

respectively.

However, when switching event occur from state y4

and yn, their comaptible connection states in mode

2 do not exist, so y4 and yn are forbidden. In this

example, we have illustrated only the problem of

switching from states in mode 1, in which their

compatible connection states in mode 2 are ghost.

We can encounter the same problem on switching

from mode 2 to mode 1. y

Based on Kumar’s algorithm [12], we suggest
a methodology for ensuring switching between
enabled compatible connection states. For each
operating mode i, the strategy adopted can be
informally described in proposition 3. However, we
must firstly give the formal definition of forbidden
and preforbidden states.
Definition 2

A state y is called a:

1) Forbidden state if and only if:

• the switching event can occur from y,

• the compatible state of y is does not exist

in the reachable selected mode.

2) Preforbiddden state if and only if:

• the switching event cannot occur from y,

• there is a sequence of uncontrollable

events s ∈ Σ∗
ui, whose occurrence leads

to a forbidden state. �

Proposition 3

Step 1: calculate controlled process Si/Gi

(L(Si/Gi) is assumed controllable with

respect to Gi)

Step 2: identify all forbidden states BS(mode i),

Step 3: identify all preforbidden states

PBS(mode i),

Step 4: delete from Si/Gi all states in BS(mode

i) and PBS(mode i) (also all transitions

associated with these states),

Step 5: delete all states y of Si/Gi from which

there are no paths to y from the initial

state of Si/Gi.

A controllable event leading to either a forbid-
den state or a preforbidden state can be directly
disabled. On the other hand, in the case of an
uncontrollable event leading to a forbidden state,
we therefore disable the controllable event leading
to the state, from which the sequence of uncon-
trollable events can occur. The language obtained
in this way is controllable. There is therefore a
supervisor achieving this language. The problem of
calculating this supervisor has been omitted from
this paper.



Remark 1

It should be remembered that this approach makes

it possible to switch only between existing com-

patible states enabled in two operating modes. It

does however restrict, in terms of permissivity, the

controlled process behavior in these two operating

modes. �

IV. EXAMPLE OF APPLICATION

The system is comprised of three machines, as
shown in Figure 3. Initially, buffer B is empty
and machine M3 is performing other tasks outside
the unit, but it intervenes when M1 breaks down.
Starting in state I1, machine M1 takes a workpiece
(event b1) (resp. event b3) from an infinite bin,
thereby moving to state W1, machine M1 may
either complete its work cycle, returning to state I1

(event e1), or else break down (event f1), moving
to state D1. It remains in D1 until occurrence of
repair event (r1). M2 operates similarly, but takes
its workpiece from B and deposits it, when finished
in an infinite output bin.
In this example, we assume that only M1 can break
down and that M1 cannot recover its nominal use if
M3 is working. Figure 4 shows automaton models
Gi of each machine Mi.

Machine M 1

1b

Machine M 2
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e

3
Machine M 3

b

�����
�����
�����
�����

���
���
���
���

    

b2

disturbance 

B
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e 3

Fig. 3. Manufacturing system with three machines and Buffer
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Fig. 4. Automaton models for machines Mi (i ∈ {1, 2, 3})

In this example, the different operating modes

considered are one degraded mode and one nominal
mode.
In nominal mode (labeled n) the M1 and M2 ma-
chines are operating. The degraded mode (labeled
d) corresponds to operating machine M3 instead of
machine M1, which has failed, whilst machine M2

is in operation.
The global alphabet is Σ = Σn ∪ Σd ∪ Σ′ where:

Σn = {b1, b2, e1, e2}, Σd = {b3, b2, e3, e2},

Σ′ = {f1, r1}.

Σn represents alphabet in nominal mode, Σd rep-
resents alphabet in degraded mode and Σ′ is the
set of switching events. The designer has included
different possible switchings. We assume that the
system is initially in mode n, so occurrence of
switching event f1 will lead the system to mode
d. In degraded mode, occurrence of switching
event r1 leads the system to the nominal mode.
Figure 5 depicts the process models in nominal and
degraded mode.
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Fig. 5. nominal and degraded process model

For each process model, we now assign a cor-
responding specification model. The specifications
state simply that B must be protected against
underflow and overflow. In the nominal mode, the
corresponding specification assumes that the buffer
B capacity is 3 workpieces. In degraded mode, the
corresponding specification assumes that the buffer
B capacity is 1 workpiece.
Specification models for each operating mode are
represented in Figure 6.
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The selfloops Σ1, Σ2, Σ3, Σ4, Σ5 and Σ6,
are Σn − {e1, b2}, Σn − {e1, b2}, Σn − {e1, b2},
Σn − {b1, b2}, Σd − {f3, b2} and Σd − {b3, b2}

respectively.
Having set up process and specification models

for each operating mode, we then obtain controlled
process Sn/Gn (see Figure 7) and controlled pro-
cess Sd/Gd (Figure 8).
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We note that, in the mode n, switching event f1

can occur from states (W1I20), (W1I21), (W1I22),
(W1W20), (W1W21) and (W1W22). By applying

proposition 1 and 2, the set of compatible connec-
tion states, after switching from mode n to mode
d, is shown in the following table.

States in mode n Compatible states in mode d

(W1I20) legal state (I3I20) legal state

(W1I21) legal state (I3I21) legal state

(W1I22) forbidden state (I3I22) ghost state

(W1W20) legal state (I3W20) legal state

(W1W21) legal state (A3W21) legal state

(W1W22) forbidden state (I3W22) ghost state

TABLE I

LEGAL, FORBIDDEN AND GHOST STATES FOR EVENT f1

Applying proposition 3, we obtain the new con-
trolled process model in mode n (see Figure 9).
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Fig. 9. New controlled process model Sn/Gn in mode n

Controlled process model Sd/Gd remains the
same because the compatible connection states of
the states in mode d, from which the switching
event r1 can occur are allowed in mode n.

V. CONCLUSION

This paper proposes a Supervisory Control
Theory-based approach. We have presented a
framework for managing switching of systems,
whose dynamics change as they evolve in several
operating modes. Our primary contribution is the
introduction of a multi-model approach involving
representation of a complex system by several
simple models. Each model is a partial description
of the system in a given operating mode. Initially,
only one model is activated and the nominal oper-
ating mode is generally assumed. All other modes



are effectively deactivated. Common components
are possible in each considered mode and the
concept of tracking is introduced. We have there-
fore extended each considered controlled process
model and defined a switching mechanism, which
makes it possible to track explicitly the behavior
of each process model. This switching mechanism
is characterised by information channels. In other
words, we have shown that switching between
modes is only between compatible states. We have
shown also that there is a subset Q of states in
mode i (resp. Q′ in mode j) from which the
switching event can occur and that their compatible
connection states in mode j (resp. in mode i) are
ghost. We have therefore proposed an algorithm
permitting avoidance of both this subset of so-
called forbidden states and of the set of so-called
preforbidden states of mode i (resp. of mode j),
from which the ocurrence of the uncontrollable
event sequence leads to a forbidden state of Q

(resp. of Q′).
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