
Mathematics and Computers in Simulation 70 (2005) 394–407

Multi-Model approach to discrete events systems:
Application to operating mode management

Oulaid Kamach∗, Laurent Píetrac,Éric niel
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Abstract

In this paper, we propose a framework for designing suitable switching control decisions for discrete event systems (DES) whose
structures change as they develop in different operating modes. Control decisions consist of either an event in a sequence to occur
enabling an event or preventing the event from taking placedisabling an event.

Our contribution enables to adopt different modeling approaches and ensures switching between all designed process models
when there is commutation between the operating modes. Thus, in the context of supervisory control theory (SCT), we propose that
each model automaton represents process functionning in a specific operating mode.

Specifications imposed on any operating mode could be conflicting. An attractive alternative is switching control, in which a
different controller is applied to each operating mode [P. Charbonnaud, F. Rotella, S. Médar. Process Operating mode Monitoring
Process: Switching Online the Right Controller, IEEE transactions on systems, Man and Cybernetics, Part C 31(1) pp 77-86. 2002;
M. Zefran, J. Burdick, Design of switching controllers for systems with changing dynamics, in: Proceedings of the 37th conference
on Decision and control, 1998, pp. 2113–2118]. Control of process functionning means that both process and specification models
must be associated with one specific operating mode.

Based on supervisory control theory, our work focuses on operating mode management in particular when the process is subject
to failure. The adopted approach (multi-model) assumes that only one attempted operating mode is activated at any one time,
while the others are considered desactivated. The problem of commutation and tracking between all designed models (process and
specification) is formalised by the proposed framework. In this context, several questions are raised. Is the process engaged in a
state which is compatible with the atteined mode ? Are the specifications consistant with each starting state ?. Are the specification
conflicting ? Can all defined states be reachable ?

To answer correctly these questions, a mode switching mechanism must be formalised.
© 2005 Published by Elsevier B.V. on behalf of IMACS.
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1. Introduction

A discrete event system (DES) is a special type of dynamic al systems. The “state” of these systems changes at discrete
instants in time and the term “event” represents the occurrence of discontinuous change. Different DES models are
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currently used for specification, verification and synthesis. The DES formalism allows the analysis and the assessment
of different qualitative and quantitative properties of the existing physical systems. Therefore, if the technological
development extends the functionalities of embedded controllers and their safe reliability, it can steadily increase the
complexity of both modeling and synthesis processes. In fact, DES controls are increasingly to technologies whose
main objectives are to obtain optimum performance characteristics requiring formal validation. The supervisory control
theory (SCT) of Ramadge and Wonham[9,10] can be very helpful in relation to these performance characteristics,
first by offering conventional synthesis of controlled dynamic invariant systems through feedback and, second, by
verification of properties such as controllability and non blocking. However, in this theory, the complete plant (process)
often results in a combination of components. The size of the resulting model increases exponentially with the number
of components and controller synthesis becomes a laborious process. Component number will increase if we must also
consider different process structures associated to different operating modes. Keeping in mind the advantages of SCT,
we extend this theory in order to eliminate the following drawbacks.

(1) All components composing the global process are not required in each operating mode,
(2) Defined specifications for each model can be conflicting when commuting from one mode to another and can lead

to the system blocking.

Obviously, when commutation is needed, it comprises changing both the structure and specifications, i.e., the several
models are needed but not at the same time. Adapting the divide and conquer strategy makes this management easier
and a multi-model approach seems natural.

The multi-model approach involves representing complex systems by a set of simple models, each of which describes
the system in a given operating mode. Changing mode and process structure raises problems such as mode switching
and model tracking. By studying mode switching, we define the commutation condition, model connection, process
model tracking and the way the corresponding specifications are activated:

• commutation condition identifies the process states in which the operating mode is required;
• model connection results in global strategy for the controlled process;
• model tracking is defined for the process because of commutation event localisation;
• activating specifications means that the requirement must be consistant with the process starting state.

The paper is organized as follows: Section2 introduces briefly SCT which is the basis of our approach. Sections3 and
4 are devoted to the formalization of the problem of commutation modes and introduce the process tracking and the
specification accommodation respectively. Section5 comprises an illustrative example and Section6 conclludes the
paper.

2. Framework

This section introduces the main emboding SCT and the problem of considering operating modes. The original
SCT framework is based on distinguishing process and specification models. The process is seen as an uncontrolled
DES and is modeled by an automatonG = (Q, Σ, δ, q0, Qm), whereQ is a set of states,Σ is the alphabet,δ is the
transition function (partial function), a partial functionδ : Q × Σ −→ Q, q0 ∈ Q is the initial state, andQm ⊆ Q is
the subset of marker states. For any eventΣ ∈ Σ and stateq ∈ Q, if δ(q, Σ) is defined, (i.e., there is some state in the
process that we can reach fromq via σ), we writeδ(q, σ)!. The definition ofδ can be extended to a partial function
for Q × Σ∗, such that (∀σ ∈ Σ)(∀s ∈ Σ∗), δ(q, sσ) = δ(δ(q, s), σ) and∀q ∈ Q, δ(q, ε) = q. The setΣ∗ contains all
possible finite strings (i.e., sequence) overΣ plus the null stringε. The language generated byG, denoted byL(G), is
also called the closed behavior ofG:

L(G) := {s ∈ Σ∗ | δ(q0, s)!}.
This language describes all possible event sequences that the DES can undergo. ThusL(G) ⊂ Σ∗. The marked language
is Lm(G) := {s ∈ Σ∗ | δ(q0, s) ∈ Qm}.

G is said to be a recognizer forLm(G). The marked states are used to model “deadlock” or “livelock” blocking.
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Fig. 1. Changing structure process.

A specification modelS is also an automaton (S = (X, Σ, ξ, x0, Xm)) and the controlled DESS/G is obtained by
composition ofG andS, i.e.,S/G = (X × Q, Σ, ξ × δ, (x0, q0), Xm × Qm) whereξ × δ : X × Q × Σ −→ X × Q :
(x, q, σ) �→ (ξ(x, σ), δ(q, σ)) providedξ(x, σ)! andδ(q, σ)!. For more details on SCT, the reader is referred to[1,12,11].

To establish such supervision onG, we partition the set of eventsΣ into the disjoint setsΣc of controllable events
andΣuc of uncontrollable events. Controllable events are those events whose occurrence can be prevented (i.e., may
be disabled). Uncontrollable events are those events which cannot be prevented and are deemed premanently enabled.

In most cases, the system can be subdivided into several subsystems. Similarly, process and specification models
are the combinations of several simples models. Because of state graph manipulation, a current SCT application
problem is the explosion in state numbers as component numbers increase. This explosion is often dealt with by
performing horizontal (modular or decentralized) or vertical (hierarchical) decomposition of the underlying control
problem[6–8,14,3,13].

Let us take as a motivating example, a production system, which must manufacture various products and react
rapidly to failures. Different system use corresponds to different operating modes. Adjustment and maintenance modes
are examples of other operating modes that are also necessary for the production system. However, a system does
not require all components in each operating mode (as shown inFig. 1). Furthermore, specifications differ for every
operating mode because the objectives of each one are different. Previous approaches are difficult to put into practice
on a multi-operating mode system because they consider only a single model of the system and because of multiple
specifications may be in conflict.

We assume that the process model can change its structure when commuting from one operating mode to another
by engaging new components. For instance,Fig. 1shows that there are common components engaged in two operating
modes and some components do not contribute to production in modei, but they intervene when a commutation from
modei to j is performed.

3. Commutation process models

This section focuses on guaranteed functioning under failure which, whilst causing degraded production, does allow
continuity of service.

Reactive systems must be flexible to perform under controlled fault. This flexibility involves taking into account
different operating modes. We are interested in modeling these operating modes by applying a multi-model approach,
which involves designing model process control for each operating mode.
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Fig. 2. Information channel in charge of the commutation process.

We look first at the process model problem.
Define � = {1, 2, . . . , m} as a set containing indices of all required operating modes.Card(�) represents the

number of process models to be designed. In the case of two operating modes,� = {1, 2} andCard(�) = 2.
An operating mode fixes the set of the components required to perform the task. These components make up the

process in a given mode and, in an SCT context, the process is modelled by a model automaton. Commutation between
modes tacke place when a particular event called commutation events occurs. If we consider just one structure such
that there is always a subset of common components between two modes, the behavior of this subset must be tracked
to define correctly the states from which an operation must be taken. A tracking mechanism is therefore introduced,
ensured by information channels inserted between processe models. The role of these channels is to record all event
sequences generated by the activated process until an commutation event occurs (seeFig. 2).

Let i ∈ �. We defineGi as an uncontrolled DES process taken to be an automaton of modei. Formally:

Gi = (Qi, Σi, δi, q0,i, Qm,i)

We suppose thatΣi ∩ Σj 	= ∅, i.e., we assume that common components can be found between two modesi andj.

Definition 3.1. let Σ′ = ∪ij{αij |(i 	= j)}, the set of commutation events. The commutation eventαij change the
operating mode of the system from modei to modej,

• we assume that∀i ∈ �, Σ′ ∩ Σi = ∅,
• in the case of two operating modes, the setΣ′ contains two eventsα12 andα21.

For simplicity, we consider the case of two operating modes. Initially, we assume that the process is engaged in mode
1. Thus, the system model isG1 and all other models (Gi, i 	= 1) are desactivated. When commutation eventα12
occurs, the process model becomesG2. However, in this case, we must correctly determine the starting state ofG2
after commutation fromG1. To do this, we first extendG1 andG2 by adding respectively an inactive stateqin,1 to the
state set of the modelG1 and an inactive stateqin,2 to the state set of the modelG2 based on term significative state
suggested by Dangoumau[4]. Occurrence of commutation eventα12 will lead modelG1 to inactive stateqin,2 and the
process modelG2 will be activated fromqin,2. The activated process model at a given time is thus the only model for
which the current state is different to the inactive state.

So for modelGi, the extended model is defined as follows:

Gi,ext = (Qi,ext, Σi,ext, δi,ext, q0,i,ext, Qm,i,ext) with :

(1) Qi,ext = Qi ∪ {qin,i}: extended set states with an inactive state,
(2) Σi,ext = Σi ∪ Σ′: extended alphabet with the set of commutation events,

(3) q0,i,ext =
{

q0,i if i = 1 : we assume initially that model processG1 is in its initial state

qin,i if i 	= 1 : meaning that other modelsGi(i 	= 1) are assumed desactivated
(4) Qm, i, ext = Qm,i: marked state which equal toQm,i becauseqin,i will never be marked state,
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(5) the extended transition function is defined as follows:
◦ ∀q ∈ Qi and∀σ ∈ Σi, if δi(q, σ)!, thenδi,ext(q, σ) := δi(q, σ): extended transition function is the same as the

transition function if we consider only non extended alphabetΣi,
◦ ∀q ∈ Qi from which commutation eventαij ∈ Σ′ (i 	= j, and i, j ∈ {1, 2}) can occurs, thenδi,ext(q, αij) :=

qin,i: extended transition function allows modelGi to be desactivated if the commutation event occurs.

With regard to the process, the main aim of operating mode management is to define the starting state of modelG2
(δ2,ext(qin,2, α12)) and, in turn, the return state of process modelG1 (δ1,ext(qin,1, α21)).

We note thatG2,ext is initially in inactive stateqin,2, but, at the occurrence of the commutation eventα12, G2,ext must
leaveqin,2 to reach stateq ∈ Q2. Channel information introduced inFig. 2 is materialized by the projection function
πij (i 	= j) defined as follows[5]:

Definition 3.2.

πij : Σ∗
i −→ Σ∗

j such that ∀σ ∈ Σi and ∀s ∈ Σ∗
i :

πij(ε) = ε

πij(sσ) =
{

πij(s)σ if σ ∈ Σi ∩ Σj

πij(s) if σ ∈ Σi \ Σj

The projection function not constrained the two alphabetsΣi andΣj. In the particular case whereΣj ⊆ Σi, this
function corresponds to the natural projection classically used in SCT[7,13]. The actions ofπij on a strings is just to
“erase” all occurrences ofσ in s such thatσ 	∈ Σi ∩ Σj. The projection functionπij allows to track only the behavior
of the common components between the two operating modesi andj.

To track the process behavior in mode 1, we use projectionπ12, which is the mapping fromΣ∗
1 to Σ∗

2. Projection
π12 identifies inG2 the output states of intersection elements ofG1, whenα12 occurs.

The following Proposition gives formally the state form which the modelG2 will be activated (the starting state),
i.e., the determination of the transitionδ2,ext(qin,2, α12).

Proposition 3.3. Denote by follow(s) the set of events which follow the sequence of events s. ∀s ∈ L(G1), such that
α12 ∈ follow(s), the starting state of the model G2 is given by: δ2,ext(qin,2, α12) = δ2(q0,2, π12(s))

Proof. Let s ∈ L(G1), such thatα12 ∈ follow(s). Sos = σ1, σ2, σ3, σ4 . . . σn is the sequence events generated ower
alphabetΣ1. However,Σ1, as shown inFig. 3, can be decompsed in two disjoint sets:Σ1 = (Σ1 \ Σ2) ∪ (Σ1 ∩ Σ2).1

According to this partition two cases are possible:

Case 1 (π12(s) = ε). This implies that∀σ ∈ s, σ 	∈ Σ1 ∩ Σ2. In this case no common components has evolued. On the
other hand, after the occurrence of the sequence of eventss, all common components of modelsG1 andG2 remain in
their initial state. Thus, the occurrence of commutation eventα12 leadG2,ext from the inactive stateqin,2 to the initial
state ofG2. This state is the Cartesian product of all the initial states of each component constituting the modelG2. So

δ2,ext(qin,2, α12) = δ2(q0,2, π12(s)) = δ2(q0,2, ε) = q0,2

Case 2 (π12(s) 	= ε). This implies that there existsk eventsσi such thati ∈ {1, . . . , n} andσi ∈ Σ1 ∩ Σ2. Thenπ12(s) =
si with si the ordered sequence of eventsσi. Thus we are in the situation where at least one of the common components
i changed state. Then the reachable state in the modelG2 is not necessary its initial state. Hence the reached state in
the modelG2 will not have to be its initial state. It will be determined by:

δ2,ext(qin,2, α21) = δ2(q0,2, π12(s)) = δ2(q0,2, si). �

Let us now assume theG1 is desactivated, i.e., is in the inactive stateqin,1 andG2 is activated, i.e.,G2 is in state
q ∈ Q2 (q 	= qin,2). If α21 occurs,G2 will be desactivated, butG1 will leaveqin,1 to reach stateq ∈ Q1. As before, we
must now define the return stateδ1,ext(qin,1, α21).

1 Σ1 \ Σ2 = {σ ∈ Σ1|σ 	∈ Σ2}.
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Fig. 3. Partition ofΣ1.

Reciprocally, we introduceπ21 : (Σ2)∗ −→ (Σ1)∗ which has the similar definition asπ12.
The following Proposition provides the formal framework for the determination of this recovering state (state from

which the modelG1 will be activated).

Proposition 3.4. ∀s ∈ L(G1) such that α12 ∈ follow(s), and ∀s′ ∈ L(G2, δ2(q0,2, π12(s)))2 such that α21 ∈
folllow(s′), the recovering state of the model G1 is given by:

δ1,ext(qin,1, α21) = δ1(q0,1, π12(s)π21(s
′))

Proof. According to whetherπ12(s) andπ21(s′) are equal toε or not, and according to the evolution or not of common
components, four cases are to be studied.

Case 1 (π12(s) = ε andπ21(s′) = ε). None the common components betweenG1 andG2 did not evolve, which imply
that∀σ ∈ s, σ ∈ Σ1 andσ 	∈ Σ2 thenδ2(q0,2, π12(s)) = δ2(q0,2, ε) = q0,2.

The modelG2 admits its own intial stateq0,2 as the starting state after the occurrence of the commutation event
α12. Similarly for the recovering state, sinceδ1(q0,1, π12(s)π21(s′)) = δ1(q0,1, ε) = q0,1.

Thus, the modelG1 admits as recovering state:

δ1,ext(qin,1, α21) = δ1(q0,1, π12(s)π21(s
′)) = δ1(q0,1, ε) = q0,1

Case 2 (π12(s) = ε andπ21(s′) 	= ε). In the mode 1 no common component evolved, but in the mode 2, at least a
common component betweenG1 andG2 evolved.

π12(s) = ε implies thatδ2(q0,2, π12(s)) = δ2(q0,2, ε) = q0,2.
However, ifπ21(s′) 	= ε, there existsσ′ ∈ s′ such thatσ′ ∈ Σ1 ∩ Σ2. So the recovering state in the modelG1 can

be different of the initial stateq0,1. This state (recovering state) is determined by the set of common events in the two
alphabetsΣ1 andΣ2 in s′. Thus, we can write:

δ1,ext(qin,1, α21) = δ1(q0,1, π12(s)π21(s
′)) = δ1(q0,1, π21(s

′))

Case 3 (π12(s) 	= ε andπ21(s′) = ε). In the mode 1 at least one common components is evolved. But no common
components betweenG1 andG2 did not evolve in the mode 2.

π12(s) 	= ε implies that there existsσ ∈ s such thatσ ∈ Σ1 ∩ Σ2. So at least one common component changed state
before the occurrence of the commutation eventα12. Thus, the starting state of the modelG2 is not necesseralyq0,2
but a state given byδ2(q0,2, π12(s)). By taking into account thatπ21(s′) = ε, this implies that the recovering state in
the modelG1 is given following the occurrence of an commutation eventα21 as follows:

δ1,ext(qin,1, α21) = δ1(q0,1, π12(s)π21(s
′)) = δ1(q0,1, π12(s))

2 L(G2, δ2(q0,2, π12(s))) = {u ∈ (Σ2)∗|δ2(δ2(q0,2, π12(s)), u)!}
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Fig. 4. Multi-model structure.

Case 4 (π12(s) 	= ε andπ21(s′) 	= ε). At least one common component has evolved in the two modes 1 and 2. By
adopting the previous reasoning, it follows that:

δ1,ext(qin,1, α21) = δ1(q0,1, π12(s)π21(s
′)) �

Remark 1. Since each process model has a unique inactive state, we have a nondeterministic problem. Indeed, from
an inactive stateqin,j, several states can be reached for the same commutation event. To overcome this problem, we
define a set of events allowing occurrences of commutation eventαij : αij = αijk if δj,ext(q0,j, πij(s)) = qk,j to be
distinguished in modelGj.

4. Commutation specification models

In Section3, we studied the switching mechanism between different processes models. We extended these models
to determine their compatible states of connection. In this Section, we etablish the switching mechanism between
specification models by researching the states from which these models must be activated, while ensuring adequacy
between current process dynamics and control decisions. Each process model is associated with a specification model
(Fig. 4), so a change of operating mode may allow different dynamics for the selected (activated) process model. In
this case, the associated specification model must be activated from a state that allows suitable control decisions to be
made with respect to the new process model dynamics.

As seen above for a process model (Section3), we assume that one specification model is activated for a given
operating mode.

Commutation eventαij leads specification modelSi to inactive statexin,i but specification modelSj must leave
inactive statexin,j to reach compatible statex ∈ Xj with the new dynamics for processGj.

If we assume that, after commutation from modei to modej, the starting state of process modelGj is q, so the
new dynamics for process modelGj is L(Gj, q) := {s ∈ Σ∗

j |δj(q, s)!}. Statex ∈ Xj is called compatible for the new
process modelGj dynamics (L(Gj, q)) if the intersection specification language from statex ∈ Xj(L(Sj, x) := {s ∈
Σ∗

j |ξj(x, s)!}) and the generated languageL(Gj, q) equals the corresponding desired language (L(Sj, x) ∩ L(Gj, q) =
Kj,q, whereKj,q is the desired language from stateq).

Formally, for specification modelSi = (Xi, Σi, ξi, x0,i, Xm,i), we define the extended specification modelSi,ext =
(Xi,ext, Σi,ext, ξi,ext, x0,i,ext, Xm,i,ext) as follows:

(1) Xi,ext = Xi ∪ {xin,i}.
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(2) Σi,ext = Σi ∪ Σ′.

(3) x0,i,ext =
{

x0,i if i = 1

xin,i if i 	= 1
(4) the extended transition functionξi,ext is defined as follows:

◦ ∀x ∈ Xi and∀σ ∈ Σi, if ξi(x, σ) exists, thenξi,ext(x, σ) := ξ(x, σ),
◦ ∀x ∈ Xi from whichαij (i 	= j andi, j ∈ {1, 2}) can occur, thenξi,ext(x, αij) := xin,i.

The above extended specification model is incomplete.
Transition functionξi,ext(xin,i, αij) (for i, j ∈ {1, 2} andi 	= j) reamins to be defined.
The main problem in this section is the determination of an adequate starting stateξi,ext(xin,i, αji) that allows correct

control decisions to be made with the new process dynamics to achieve the desirable behavior associated with the new
operating mode.

There are common components to both modes, so commutation from modei to modej is performed somewhere
along the paths to state (q, x) ∈ Qi × Xi. The starting statex ∈ Xj depends on event sequencess ∈ L(Si/Gi) checking
follow(s) = αij.

We therefore need to identify pathss ∈ L(Si/Gi), along which commutation eventαij should occur.
First, we identify all pairs of states (q, x) ∈ Qi × Xi, where fors ∈ L(Si/Gi) andαij ∈ follow(s), such thatδi ×

ξi((q0,i, x0,i), s) = (q, x).
Let Q′

i such set state, and letKi,Q′
i

be its describing language such thatKi,Q′
i

:= {s ∈ L(Si/Gi) | δi ×
ξi((q0,i, x0,i), s) ∈ Q′

i}. It is easy to show that the languageKi,Q′
i

is partitioned into a set of languagesKi,q,
whereKi,q contains all event sequences which lead to a stateq ∈ Q′

i, i.e., Ki,Q′ = ∪q∈Q′
i
Ki,q, whereKi,q := {s ∈

L(Si/Gi) | δi × ξi((q0,i, x0,i), s) = q}.
If we assume that∀s ∈ Ki,q, there is one desired language from the starting stateδj,ext(q0,j, πij(s)).
When commutation eventαij occurs, we assume that the starting state of modelGj is q′

j and this state is given
by Proposition 3.3. There is therefore a unique stateq ∈ Q′

i and an event sequences in Ki,q such thatδi × ξi((q0,i ×
ξ0,i), s) = q andδj(q0,j, πij(s)) = q′

j. The desired language from starting stateq′
j is built up according to event sequence

s. Let Kj,q be such a language.
The following Proposition expresses the starting state of specification modelSj compatible with stateq′

j.

Proposition 4.1. The starting state of Sj is given by the solution to the following problem: find a unique xk such that:
L(Gj, q

′
j) ∩ L(Sj, xk) = Kj,q′

j
where Kj,q′

j
is the desired language from q′

j.

Proof. suppose there are two statesxk andxk′ , such thatxk 	= xk′ and

L(Gj, q
′
j) ∩ L(Sj, xk) = Kj,q′

j
. (1)

L(Gj, q
′
j) ∩ L(Sj, xk′ ) = Kj,q′

j
. (2)

Eqs.(1) and (2)mean that∀s ∈ Kj,q′
j
:

δj × ξj((q
′
j, xk), s) = δj × ξj((q

′
j, xk′ ), s).

So (δj(q′
j, s), ξj(xk, s)) = (δj(q′

j, s), ξj(xk′ , s)). We then get∀s ∈ Σ∗
j .

ξj(xk, s) = ξj(xk′ , s).

For s = ε, we havexk = xk′ , contradicting the fact thatxk 	= xk′ . �
We now assume that specification modelSj is activated, i.e., the assiciated model is in statex ∈ Xj andSi is desactivated,
i.e., is in an inactive statexin,i. If the commutation eventαji occursSj will be desactivated butSi will leave xin,i to
enter a statex ∈ Xi. We must, as before, define the return state of specification modelSi and a similar method can be
used.

We assume that the return state of model automatonGi is qi so the return state of specification modelSi is given
by the solution to the following problem: find an uniquexl such thatL(Gi, qi) ∩ L(Si, xl) = Ki,qi , whereKi,qi is the
desired language fromqi.
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Fig. 5. Diagram of production unit example.

Fig. 6. Automata models of machinesMi (for i ∈ {1, 2, 3}).

5. Illustrative example

The proposed approach is illustrated by means of a production example. This system features three machines, as
shown inFig. 5.

Initially, buffer B is empty and machineM3 is performing another task outside the unit, but it intervenes whenM1
breaks down. With eventb1 (respectivelyb3), M1 (repectivelyM3) picks up a workpiece from an infinite bin and places
it in buffer B after completing its work (evente1, repectivelye3). M2 operates similarly, but takes its workpiece from
B (eventb2) and places it in an infinite output bin when it has finished its task (evente2). It is assumed that onlyM1
can break down (eventf1) and be repaired (eventr1) (as shown inFig. 6). Two operating modes are designed for the
overall system: a nominal mode (Gn), in whichM1 andM2 produce and a degraded mode (Gd), in whichM3 replaces
M1. These two modes are built up from models ofM1, M2, andM3, but they excludef1 andr1 events, which are
considered as commutation events between modes
′ = {f1, r1}.

Initially, the system runs in the nominal mode described by the modelGn. Whenf1 occurs, the system switches to
the degraded mode described by the modelGd. Occurrence ofr1 allowsGd to switch toGn (Fig. 7). This means that
only one operating mode is activated at one time.M2 is considered as the common component and will be associated
with this component thereby tracking the process and the specification.

In the example, the set of eventsΣglobal = {b1, b2, b3, e1, e1, e3, f1, r1} can be partitionned into 3 sets:Σn =
{b1, b2, e1, e2}, the nominal mode set,Σ′ = {f1, r1} commutation event set andΣd = {b3, e3, b2, e2} degraded mode
set.

The commutation event (failure eventf1) can occur from stateq1,n andq2,n. We can show that∀s ∈ L(G1,n), such that
f1 ∈ follow(s) andδn(q0,n, s) = q1,n (respectivelyδn(q0,n, s) = q1,n ) and find thatπnd(s) = (b2e2)n (where n∈ N

∗3

and (b2e2)0 = ε) (respectivelyπnd(s) = (b2e2)nb2). In this case therefore, the adequate starting state (Proposition
3.3) of degraded model isδd,ext(qin,d, f1) = δd(q0,d, πnd(s)) = δd(q0,d, (b2e2)n) = q0,d (respectivelyδd,ext(qin,d, f1) =
δd(q0,d, πnd(s)) = δd(q0,d, (b2e2)nb2) = q2,d).

3
N

∗ is the set of positive integers: 1,2,3,. . . .
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Fig. 7. Nominal and degraded process model.

Fig. 8. Extended nominal and degraded porcess model.

Similarly, and by applyingProposition 3.4, the return states of the nominal model, when commutation eventr1
occurs, areq0,n andq2,n. The extended nominal and degraded process models are shown inFig. 8.

The nominal process model specification is such that: the buffer must not overflow to 1 nor underflow to 0 (seeFig.
9).

Similary, the degraded process model specification is: the buffer must not overflow to 1 nor underflow to 0 (seeFig.
10).

The initial state of the nominal mode specification isx0,n. However, since the degraded process model has two starting
statesq0,d andq2,d, i.e., two different dynamics (L(Gd, q0,d) andL(Gd, q2,d)), the degraded mode specification model
can be also activated from a state possibly different to the initial statex0,d.

When commutation eventf1 occurs, the nominal specification model will be desactivated but the degraded speci-
fication will be activated and conversely when eventr1 occurs.

The extended nominal and the degraded specification models are represented inFigs. 11 and 12, respectively.
The controlled process in the nominal mode is shown inFig. 13.

Fig. 9. Nominal mode specification model.

Fig. 10. Degraded mode specification model.
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Fig. 11. Extended nominal mode specification.

Fig. 12. Extended specification of the degraded mode.

We are especially intersted in statesq1,n andq4,n of the controlled processSn/Gn, in which commutation event
f1 can occur. We then want to find languagesKn,q1,n and Kn,q4,n in relation to statesq1,n and q4,n respectively,
i.e., Kn,q1,n = {s ∈ L(Sn/Gn)|δn × ξn((q0,n, x0,n), s) = q1,n} andKn,q4,n = {s ∈ L(Sn/Gn)|δn × ξn((q0,n, x0,n), s) =
q4,n}. We assume that the commutation event occurs in a stateq1,n.

So∀s ∈ Kn,q1,n, the state buffer is empty (x0,n), so the desired degraded model langage in at stateq0,d is Kd,q0,d =
{b3, b3e3, b3e3b2, . . .}. The starting state of specification modelSd permitting the desired languageKd,q0,d to be
reached is given by the solution of the following equation:

L(Gd,q0,d) ∩ L(Ss,xl
) = Kd,q0,d.

If we assume that commutation eventf1 can occur from stateq4,n as before∀s ∈ Kn,q4,n and the output state of the buffer
is empty. Thus, the desired degraded model language at stateq2,d becomesKd,q2,d = {b3, e2, b3e3, e2, b3e3b2, . . .}.

As a result, the starting state of the specification modelSd in this case is given by the solution of the following
equation:

L(Gd,q2,d) ∩ L(Ss,xl
) = Kd,q0,d.

Statexl checking the last equation isx0,d.
The extended degraded model is shown inFig. 14.

Fig. 13. The controlled process in the nominal operating mode.
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Fig. 14. Extended degraded process and the corresponding specification model.

Fig. 15. Extended degraded controller.

Using “TCT”,4 the extended degraded controller is shown inFig. 15.
We can find the return state of the nominal specification modelSn in the same way. Finally, the extended nominal

process and specification model are shown inFig. 16.
Using “TCT”, the extended nominal controller is shown inFig. 17.

6. Conclusion

The proposed approach allows commutation between different models of a global system reacting to exceptional
situations such as failure event occurrence. The major contribution of this paper considers reactive systems with different

4 “TCT” is a tool allowing SED simulation and is a program for the synthesis of supervisory controls for untimed discrete-event systems.
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Fig. 16. Extended nominal process and corresponding specification model.

objectives. Each objective (i.e., operating mode) is represented by a set comprising a model process and a specification.
Assuming that different models evolve independently, the main problem is then to deactivate modelGi and commute
to a modelGj as soon specification one.Gj will be considered as the process model until an exceptional event occurs.
A formal framework based on tracking events is proposed to ensure commutation. This framework introduces a new
definition of the projection function.

Propositions 3.3, 3.4, and 4.1, represent the principal results of this paper. They define formally the starting and
return states of a new activated process model in a new structure system after commutation.

Fig. 17. Extended nominal controller.
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Laboratoire d’Automatique Industrielle, INSA de Lyon, 2000.
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