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Abstract: Abstract: DES multi-modeling appears to be well adapted to management of
production system operating modes. Associating a specific model of the process to be
controlled and its specifications is in fact natural. However, conceptual problems
involving the control aspect may arise, when an admissible distinctive behavior set is
specified without considering the ensuing complexity. The aim of this paper is to specify
and validate formally operating mode management under generalized conditions.
Basically, the paper extends the model commutation problem (process-limited) from one-
to-one to one-to-all. Its main results concern the generalized tracking mechanism for a
different process behavior combination.
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1. INTRODUCTION

Today, industrial system efficiency results in not only
high productivity rates but also high reactivity
performance. This means that, whilst a process is well
controlled for a given requirement, an unwanted event
must cause it  to operate differently (products must
continue depending on the system reactivity). When
more that one unwanted event is considered, process
multiple behavior can be accepted. We assume that
the process remains unchanged in an operating mode,
but process potentiality (structure and performance
characteristics) changes drastically when an
exceptional event occurs and this means that the
original process has changed. Well structured
reactivity will depend firstly on the organization of
data emitted from the enterprise level to the execution
plant and secondly on control adaptability. Operating
mode management offers both an industrial and a
scientific challenge in relation to this last point. The
main problems encountered in this area are correct
specification definition, exhaustive validation and
modified process behavior management.
Generally, specification description needs to include
nominal and exceptional admissible behaviors. If

nominal behaviors are not unique and their definition
is laborious (full power operation, downgraded
operation, etc.), taking exceptional behaviors into
account increases complexity. Reasons for an
improperly defined specification set are probably lack
of well adapted methodology (even when sectarian
methods exist or depend on standards adaptation ISA
881) or insufficient knowledge of legal commutation
procedures.
Validation ensures correctness of all predefined
requirements at design stage and will establish
whether required operating modes are possible, well
connected and sufficiently accessible. Thus,
validation considers not only internal mode behavior,
but also mode commutations, which must establish a
set of conditions governing commutation, starting
state and recovery state from one mode to another.
Partial contributions to solving this problem have
been provided using empirical approaches
(GEMMA2) but these are limited for small systems.
Other contributions offer a more appropriate
modeling aspect (Statechart, (HAREL, 1996))
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involving conciseness, but they remain insufficient
for proving properties essential to validation.
Automata theory provides a more formal context and
its extension will form the basis of our proposal
described in the following sections.
Formal commutation has been solved and submitted
in terms of model tracking from one mode to another.
This paper attempts to generalize the process model
commutation problem, when a distinctive operating
mode combination is considered. Process model
tracking mechanisms are studied especially with
respect to starting state recognition, on the first hand,
and recovery state recognition on the other hand.
Information channels are used to ensure commutation
enabling as described in (Lin and Wonham, 1988,
Wong et al, 2000). To maintain presentation clarity,
two distinct theorems will be introduced; the first
associated with starting state search channel, the
second with recovery state.
It should be recalled that only distinctive process
models are considered.
The paper is structured as follows:
Section 2 presents preliminaries required for
understanding the power of supervisory control
theory. Section 3 defines the multi-model concept,
adapted here solely to distinctive process behavior,
and illustrates it using an example. Section 4 presents
the information channel for solving the starting state
search process and this is formally expressed by
theorem 1. Recovery state will  be presented in
section 5 and is associated with theorem 2.
Finally, this paper provides conclusions and details
research prospects.

2. PRELIMINARIES

This section introduces supervisory control theory
(SCT) and the problem of considering operating
modes.
The original SCT framework is based on
distinguishing process and specification models. The
process is seen as an uncontrolled Discrete Event
System (DES) and is designed by an automaton G .
This automaton is an event generator so that

0 mG (Q,  ,  ,  q ,  Q )= Σ δ  with Q  the set of states, Σ
the set of event labels, and : Q   Qδ × Σ →  the partial
transition function which is defined at each q Q∈  for
a subset of events   σ ∈ Σ . 0q  is the initial state while

mQ Q⊆  is the set of marker states which represent

the end of tasks or final states of process. *Σ  contains
all possible finite strings over Σ  plus the empty
string ε . The definition for δ  can be extended to a
partial function * : Q   Qδ × Σ →  such that

(q, ) q (  q  Q)δ ε = ∀ ∈  and (q,s ) ( (q,s), )δ σ = δ δ σ

with   σ ∈ Σ  and *s ∈ Σ .
The language generated by G  is (L(G) = {s∈ ∑*
δ(q0,s)!})3 and its marked language is Lm(G) =
{s∈ ∑*  δ(q0,s)∈ Qm}. Lm(G) can be calculated by

                                                          
3 we write δ(q,s)! as an abbreviation of δ(q,s) is defined.

Arden�s lemma (Wonham, 2002), and this will be
used in section 4.
Arden�s lemma:

Let A and B, two regular4 languages.
1- A*B is always a solution of the equation X =
AX+B
2- If ε ∉  A, then A*B is the unique solution of the
equation X = AX+B.

The specification model E is also an automaton, and
the controlled DES S / G  is obtained by composition
of G  and E. S/G represents the evolution of the
process G  restricted by a supervisor S . For further
explanation of theory principles, the reader is referred
to (Wonham, 2002) or (Cassandras and Lafortune,
1999) (Rudie et al, 1999).
In most cases, the system can be broken down into
numerous subsystems. Similarly, process and
specification models are the combination of several
simple models. Therefore, a current SCT application
problem is the explosion in the number of states as
the number of components increases. This explosion
is often handled by performing horizontal (modular or
decentralized) or vertical (hierarchical) break-down
of the underlying control problem (Lin and Wonham,
1988, Yoo and Lafortune, 2002, Wong et al, 2000,
Chafik and Niel, 2001).
In the other words, production systems must
manufacture various productions and react rapidly to
failures, if they are to be competitive. Different
system use corresponds to different operating modes.
Adjustment and maintenance modes are examples of
other operating modes that are absolutely necessary
for system use. However, a system does not require
all components in each operating mode. Furthermore,
specifications differ for every operating mode
because the objectives of each one are different.
Previous approaches are difficult to put into practice
on a multi-operating mode system because they
consider only one process and because specifications
must be in mutual conflict. Based on an example of
two operating modes, (Kamach et al, 2002) present a
2-model approach, in which each process model uses
different components of the global system and each
operating mode corresponds to one model. In next
section, we will extend this proposal to the general
case of any number of operating modes. In this paper,
we restrict ourselves to process models only.

3. DES MULTI-MODELING DESIGN

This section focuses on modeling operating modes by
applying a multi-model concept, which involves
designing a model process for each operating mode.
The problem of commutation between all designed
models is formalized by a proposed framework. In
this case, commutation is investigated as a channel
transmitting information defining the starting state
(return state respectively) for each model operating in
one specific mode. Commutation will be ensured by

                                                          
4 A regular expression over ∑ is a formal expression obtained by a
finite number of applications of operations +, ., *



an information channel formally defined using the
notion of projection.

3.1 Example of multi-model process

The aim is to generalize the formalism introduced by
(Kamach et al, 2002) to n models (with n > 2). To
introduce the proposed approach, we consider a
simple manufacturing system, in which four different
overall system models are considered: nominal mode
is represented by model Gn and  there are three
downgraded modes Gd1, Gd2 and Gd3 (figure 3). This
system features four machines as shown in figure 1.
Initially, buffer B is empty and machines M3 and M4
are performing other tasks outside the unit, but which
intervene when M1 (respectively M2) breaks down
(event f1, respectively f2 represented by fi in figure 2).
With event b1 (respectively b3), M1 (respectively M3)
takes a workpiece from an infinite bin and enters q1,1
or q3,1 state of Gn (respectively q2,1 or q4,1 states). It
then deposits it in buffer B after completing its work.
M2 (respectively M4) operates similarly, but takes its
workpiece from B and enters q1,2 or q2,2 state
(respectively q3,2 or q4,2). It then deposits it in an
infinite output bin, when it has finished its task.

We assume that only M1 and M2 can break down and
that M1 (respectively M2) can not be repaired if M3
(respectively M4) is working.
Possible operating modes are represented in figure 3.

3.2 Formal description of multi-model commutation
management

The aim is to determine formally each operating
mode and the commutation conditions. To do this, we
define Λ as a set containing indices of all models
composing the global system with card(Λ) = n < ∞.
card(Λ) represents the number of models to be
designed. In our case, Λ = {n, d1, d2, d3}, so card(Λ)
= 4.
Let λ i ∈ Λ with i ∈  {1, .., 4}. We define Gλi  as an
uncontrollable DES, taken to be an automaton of
model λ i. Formally Gλi  =(Qλi, ∑λi, δλi, q0, λi , Qm, λi).
We assume that ∑λi ∩∑λj ≠ ∅  and initially the system
is described by Gλ1.
Let us define '

i, jλ λΣ  = ∪ {αλi,λj} as the set representing

the commutation event from Gλi (respectively Gλj) to
Gλj (respectively Gλi). When commutation event
αλi,λj, occurs, the process model becomes Gλj. In this
case, we must determine the arrival state of Gλj after
commutation and must direct Gλi to an inactive state
to disable its action. Intuitively, newly enabled Gλj
must leave its inactive state and be directed to a state
which compatible with the overall system evolution.
To do this, we introduce theorem 1 which ensures
commutation from Gλi to Gλj by using the trace or
memory of all strings that can occur from Gλ1 to Gλi.
This memory mechanism is important to ensure
overall system tracking. Let us suppose the system is
represented by Gn (figure 3). Commutation event f1
(failure event) is possible from q1,1 or q3,1. If f1 is
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Figure 2 : automata models of machines Mi, Mj
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Figure 1.a : schematic description of the
production unit example

bi : beginning of a task on Mi i ={1,.., 4}
ei : end of task on Mi : i ={1,.., 4}
fj : failure of Mj : j ={1, 2}
rj : repair of Mj : j ={1, 2}
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generated from q1,1, then the memorized string
occurring in Gn is (b1e1)*b3 and, intuitively, Gd1 must
be directed to q0,2. But if f1 is occurred from q3,1 then
the memorized string is (b1e1)*b1(b2e2)*b2 or
(b2e2)*b2(b1e1)*b1. In this case, Gd1 must be directed
to q2,2. Theorem 1 formalizes these intuitive results.
But before introducing this theorem, two steps are
required. Firstly, we introduce an inactive state to any
Gλi to disable its action. Secondly, we introduce
channel information (represented by the projection
map) to ensure process tracking. The projection
(noted 

ji λ→λπ in the remainder of the paper) tells us

whether any component belonging simultaneously to
Gλi and Gλj (machine M2 for Gn and Gd1) is working
or not, to decide whether to direct Gλj to a state in
which Mi is working, thereby ensuring system
tracking.

a) extension of Gλi and Gλj

Let us extend Gλi and Gλj by adding an inactive state
qin, λi to the state set of the model Gλi and an inactive
state qin,λj to the Gλj state set respectively. Occurrence
of commutation event αλi,λj will direct model Gλi to
its inactive sate qin, λi and activate Gλj from qin, λj. So,
for model Gλi, the extended model will be defined as
follows:
λi,ext λi,ext λi,ext λi,ext 0,λi,ext m,λi,extG = (Q , Σ ,δ , q ,Q ) wit

h
Qλi,ext = Qλi ∪  {qin,λi}

'
λi,ext λi i, jΣ = Σ λ λ∪ Σ

0,λi,ext 0,λ1q = q if λi = λ1

i0,λi,ext in,λ

m,λi,ext m,λi

q = q if λi λ1

Q = Q

≠

δλi,ext is defined as follows (Kamach et al., 2002, 2003):
1) ∀∀ θ ∈ Θ λι, ανδ ∀ σ ∑λι, ιφ δλι(θ, σ)!, τηεν 

λ i,ext λiδ (q, σ) := δ (q, σ) ;

2) ∀∀ θ ∈ Θ  λι
 from which αλi,λj can occur (with i ≠ j then

λ i,ext in,λλi j i
δ (q, α ) := q,λ .

Similarly, Gλj,ext will be defined by the same way that
Gλi,ext.

b) formalization of system tracking

The aim is to define δλj,ext(qin,λi, αλj,λi). Initially, Gλj,ext

is in inactive state qin,λj. When commutation event
αλi,λj occurs, Gλj,ext will leave qin,λϕ to reach a state q ∈
Qλj. As shown in figure 4, when event f1 occurs,
Gd1,ext, which is in qin,d1, can be directed to q0,2, q1,2,
q2,2 or q3,2. So Gd1,ext becomes a nondeterministic
automaton. To prevent this nondeterministic situation,
we introduce projection map i jλ →λπ (Kamach et al.,
2002) as:

( )

i j i j

λi λj
i j

: so that

σ if σ (Σ Σ )
σ =

otherwise

λ →λ λ λ

λ →λ

π ∑ → ∑

∈ ∩π 
ε

We extend i jλ →λπ to be defined over a language, so
that:

i j ext λi λj
* *( ) : Σ Σλ → λπ → such that:

i j ext

i j ext λi λj
i j ext

i j ext

( ) ( ) = ε and

( ) (s)σ if σ (Σ Σ )
( ) (sσ) =

( ) (s) otherwise

λ →λ

λ →λ
λ →λ

λ →λ

π ε

π ∈ ∩π  π

That is, i j ext( )λ →λπ  is a projection whose effect on a

string s ∈  
i

*
λ

∑ is to eliminate all events σ of s that do

not belong to λi λj(Σ Σ )∩ . Projection i j ext( )λ →λπ

allows, from Gλj, identification of the output states of
intersection elements in Gλi when αλi,λj occurs. Thus,
from ( i jλ →λπ )ext(s), we can determine whether

components belonging to Gλi and Gλj are working or
not to direct Gλj to a state compatible with a
component situation.
Note that in the remainder of this paper we will
express i j ext( )λ →λπ as i jλ →λπ .
The above demonstration attempts to prove that
generalization of commutation resolution assumes a
recurrent form. It shows that the information channel,
materialized by the projection function, retains only
the common components maintained from mode λi to
λj.

4. DETERMINING Gλi,ext STARTING STATES

Let us suppose that the set of commutation events
produced from Gλ1 to Gλj is
αλ1,λl, αλl,λk,� αλj,λi, αλi,λn where 1<l<k<�<j<i<n,
i.e. model Gλn,ext is now activated. The starting state
of this model is determined by transition function
λn,ext in,λn λi λn(δ (q , α )), given by theorem 1.

Theorem 1 
 ∀  n ≥  l, the extended transition function
λn,ext in,λn λi λn(δ (q , α )), of model Gλn,ext is given by

( ) ]
λn,ext in,λn λi λn

λn 0 ,λn λi λn λj λi λl λk λ1 λl 1 i

δ (q , α ) =,

δ q , π (π (...(π (π s s )..)s )→ → → → l

            �
Theorem 1 permits determination of the next state to
be reached in Gλn,ext newly enabled by scanning all
strings generated from Gλ1 to Gλi. To illustrate this
theorem, we consider the models shown in figure 4.
The aim is to determine possible starting states of
model Gd1,ext after generation of failure event f1 in
initial model Gn,ext. αλ1,λ2 = αν,δ1 = f1 can occur from
state q1,1 or state q3,1 of Gn,ext because f1 failure is
possible only when M1 is working (event b1).



Case1) First, let us suppose that f1 has occurred from
q1,1. According to theorem 1, we have

d1,ext in,d1 n,d1 d1,ext in ,d1 1δ (q , ) = δ (q , f )α =

d1 0 ,d1 n d1 1δ (q , π (s )).→

This means we need to determine string s1. To do this,
we introduce language

}{1,1

*
q n n 0,1 1,1K | (q , ) q= ω∈ ∑ δ ω =

1,1qK is the set of event sequences belonging to Gn ,

so that f1 is the next event to occur following
generation of string ω. 

1,1qK can be determined from

Arden�s lemma, as follows:
Let us consider model Gn in figure 3. The aim is to
determine ω such that n 0,1 1,1(q , ) qδ ω = . To do this,
we mark state q1,1 of Gn and obtain the following
equation system:

    q0,1 = b1q1,1 + b2q2,1 (1)
    q1,1 = b2q3,1 + e1q0,1 + ε (2)
    q2,1 = b1q3,1 + e2q0,1 (3)
    q3,1 = e2q1,1 + e1q2,1 (4)
The aim is to determine q0,1.
Then (4) ⇒ q3,1 = e1(b1q3,1 + e2q0,1) + e2(b2q3,1 + e1q0,1

+ ε)
= (e1b1 + e2b2)q3,1 + (e1e2 + e2e1)q0,1 + e2 (4�)
(4�) ⇒ q3,1 = A q3,1 + B where
A = e1b1 + e2b2
B = (e1e2 + e2e1)q0,1 + e2.
Since ε ∉  A, then (4�) allows unique solution A*B,
i.e.
q3,1 = (e1b1 + e2b2)*[(e1e2 + e2e1)q0,1 + e2]
⇒ q3,1=(e1b1 + e2b2)*(e1e2 + e2e1)q0,1 + (e1b1 +
e2b2)*e2   (4�)
Substituting q3,1 in (1) and (2) we obtain:

q1,1 = b2(e1b1 + e2b2)*(e1e2 + e2e1)q0,1

+ b2(e1b1 + e2b2)*e2 + e1 q0,1 + ε
q1,2 = b1(e1b1 + e2b2)*(e1e2 + e2e1)q0,1
+ b1(e1b1 + e2b2)*e2 + e2 q0,1

q1,1 = [b2(e1b1 + e2b2)*(e1e2 + e2e1) +
e1]q0,1 +     b2(e1b1 + e2b2)*e2 + ε
(1�)
q1,2 = [b1(e1b1 + e2b2)*(e1e2 + e2e1) +
e2]q0,1 + b1(e1b1 + e2b2)*e2 
(2�)

Replacing (1�) and (2�) in equation (1), we obtain:
q0,1 = [b1b2(e1b1 + e2b2)*(e1e2 + e2e1) + b1e1]q0,1 +
b1b2(e1b1 + e2b2)*e2 + b1 + [b2b1(e1b1 + e2b2)*(e1e2 +
e2e1) + b2e2]q0,1 + b2b1(e1b1 + e2b2)*e2

⇒ q0,1 = [(b1b2 + b2b1)(e1b1 + e2b2)*(e1e2 + e2e1) +
b1e1 + b2e2]q0,1 + (b1b2 + b2b1) (e1b1 + e2b2)*e2 + b1.
(1�)
(1�) ⇔ q0,1 = Aq0,1 + B.
According to Arden�s lemma, ε ∉  [(b1b2 + b2b1)(e1b1
+ e2b2)*(e1e2 + e2e1) + b1e1 + b2e2], then (1�) allows
unique solution A*B = 

1,1qK  with

1,1qK  = [(b1b2 + b2b1)(e1b1 + e2b2)*(e1e2 + e2e1) + b1e1

+ b2e2]*[ (b1b2 + b2b1) (e1b1 + e2b2)*e2 + b1].

We can now determine the starting state of Gd1,ext by
applying theorem 1. In fact,

1,1n d1 qπ (K )→ = [b2(e2b2)*e2+ b2e2]*[b2(e2b2)*e2]=

(b2e2)*
because b2(e2b2)*e2 = (b2e2)*, (b2e2)* + b2e2 = (b2e2)*,
then   [b2(e2b2)*e2+ b2e2]* =  ((b2e2)*)* = (b2e2)*,
because in regular algebra (Wonham, 2001) (L*)*
=L*.
i.e. [b2(e2b2)*e2] = (b2e2)*. Since L*L* = L*, then
[b2(e2b2)*e2+ b2e2]*[b2(e2b2)*e2]= (b2e2)*

1,1d1,ext in ,d1 1 d1 0 ,d1 n d1 q

*
d1 0 ,d1 2 2 0 ,2

So δ (q , f ) δ (q , π (K ))

δ (q , (b e ) ) = q  (figure 4).

→= =

Theorem 1 therefore confirms the intuitive results
referred to in section 3.2.

Case2) Now if f1 occurs from q3,1 of Gn,ext, . Arden�s
lemma gives us 

1,3qK so that

}{3,1

*
q n n 0,1 3,1K | (q , ) q= ω∈ ∑ δ ω =

Marking the state q3,1 of Gn,ext,, the above equation
system becomes:

    q0,1 = b1q1,1 + b2q2,1
    q1,1 = b2q3,1 + e1q0,1
    q2,1 = b1q3,1 + e2q0,1

    q3,1 = e2q1,1 + e1q2,1 + ε
As previously, we obtain:

1,3qK = [(b1b2 + b2b1)(e1b1 + e2b2)*(e1e2 + e2e1) + b1e1

+ b2e2]*[ (b1b2 + b2b1) (e1b1 + e2b2)*].
So

3,1n d1 qπ (K )→ = (b2e2)*b2

Therefore

31,1

*
d1 0 ,d1 n d1 q d1 0 ,d1 2 2 2δ (q , π (K )) δ (q , (b e ) b )→ =

= q2,2 of Gd1,ext (figure 4).

⇒

⇒

Gd1,ext

Figure 4 : 2 possible cases of Gd1 extended model
after generating f1.
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With a view to generalizing commutation, suppose
the system is represented by Gd1,ext and that failure
event f2 has occurred (figure 3). Machine 4 will then
replace machine 2. Production will be ensured by
machines 3 and 4 and the system will be represented
by model Gd3,ext. In this case, we must determine
possible starting states of model Gd3,ext , knowing that
the system is now represented by model Gd1,ext. From
Gd1,ext , two cases are possible:

Case 3)  starting state of Gd1,ext is q0,2 (figure 4)
In Gd1,ext , failure event f2 can occur from states q2,2 or
q3,2. In this case, we compute the language

2,2qK (
2,3qK respectively). So that

}{2,2

*
q d1 d1 0,2 2,2K | (q , ) q= ω∈ ∑ δ ω =   and

}{3,2

*
q d1 d1 0,2 3,2K / (q , ) q= ω∈ ∑ δ ω =

1) Suppose f2 is generated from q2,2 of Gd1,ext (f2
2,2 in

figure 5.a). In this case, we mark state q2,2 and, as
above, we obtain

2,2d1 d3 qπ (K )→ = (b3e3)*.

Thus, if the starting state of Gd1,ext is q0,2 and f2 has
occurred from q2,2, then from theorem 1 we obtain:

1,1 2 ,2

*
d3 0 ,4 d1 d3 n d1 q q d3 0 ,4 3 3δ (q , π (π (K )K ) δ (q , (b e ) )=→ →

=q0,4 (figure 5.b). The starting state of Gd3,ext will then
be q0,4.

2) f2 is now generated from q3,2 of Gd1,ext (f2
3,2 of

figure 5.a).
We mark state q3,2 , then

3,2d1 d3 qπ (K )→ = b3(e3b3)* = (b3e3)*b3

Therefore 
1,1 3,2d3 0 ,4 d1 d3 n d1 q qδ (q , π (π (K )K )→ →

= *
d3 0 ,4 3 3 3δ (q , (b e ) b ) =q1,4. i.e. if the starting state of

Gd1,ext is q0,2 and if f2 has occurred from q3,2, , then
based on theorem 1, Gd3,ext will be directed to state
q1,4 (figure 5.b).

Case 4) Suppose now that the starting state of Gd1,ext
is q2,2 (figure 4), thus

}{2,2

*
q d1 d1 2,2 2,2K | (q , ) q= ω∈ ∑ δ ω =  and

}{3,2

*
q d1 d1 2,2 3,2K | (q , ) q= ω∈ ∑ δ ω =

1) Suppose first that  f2 is generated from q2,2 of Gd1,ext
(f2

2,2 of figure 5.c).
We mark state q2,2, and so

2,2d1 d3 qπ (K )→ = (b3e3)* .

Therefore, based on theorem 1,
*

d3,ext in ,d3 2 d3 0 ,4 3 3 0,4δ (q , f ) δ (q , (b e ) ) q= =  .

Thus, from Gλ1,ext and after f1
1,3 and f2

2,2, have
occurred, Gd3,ext  will be directed to state q0,4 (figure
5.d).

2) If f2 is now generated from q3,2 of Gd1,ext (f2
3,2 in

figure 5.c)
As above, we mark state q3,2 .

Then *
d3,ext in ,d3 2 d3 0 ,4 3 3 3 1,4δ (q , f ) δ (q , b (b e ) ) q= =

Thus, after f1
1,3 and f2

3,2 have occurred, Gd3,ext will be
directed to state q1,4 (figure 5.d).
At this stage we can verify theorem 1. In fact

3,1 3,2

3,2
λ in,d3 2 d3 0 ,4 d1 d3 n d1 q q4,ext
δ (q , f ) = δ (q , π (π (K )K )))→ →

       = q1,4.

5. DETERMINING Gλi,ext  RECOVERY STATES

We assume that after generating commutation events
αλ1, λl, αλl, λk,�, αλj, λi, αλi, λn, event αλn, λi (in our case,
a repair event) can occur. In this case, Gλn,ext will be
directed to its inactive state qin,n and Gλi,ext will be

Gd3,ext
qin,d3

2,2
2f

e3

e4e4

b3

b4b4

q1,4q0,4

q3,4q2,4
b3

e3

2,3
2f

(b)

qin,d1
Gd1,ext

1,1
1f e3

e2e2

b3

b2b2

q1,2q0,2

q3,2q2,2

e3

b3

(a)
2,3

2f
2,2

2f

Figure 5 : possible cases of Gd3 extended model
after generating f1 and f2.
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2,2
2f

2,3
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simultaneously activated, leaving its inactive state qin,i

to enter recovery state q ∈  Gλi. To do this, the entire
system evolution history must be known i.e. all
strings generated from Gλ1 to Gλi and all strings that
will occur from Gλn to GλI, which will be reached a
second time, must be memorized. Theorem 2 is
introduced to ensure this mechanism.

Theorem 2:
∀  n ≥ l the extended transition function
λ i,ext in,λi λn iδ (q , α ),λ of  model Gλi,ext is given by:

( )

λi,ext in,λi λn λi

λi,ext 0 ,λ λn λi λi λn λj λi λl λki

λl λ1 1 i n

δ (q , α ) =,
 δ (q , π (π (π (...(π

(π s s )...)s )s )))

→ → → →

→ l

Let consider the unit production example and suppose
that after generation of f1 and f2 failure events, unit
production is represented by model Gd3,ext. At this
level, repair event r1 (r2 respectively) can occur. If this
is the case, the system will then be directed to Gd2,ext
(Gd1,ext respectively). On the other hand, when
describing our unit production, we have assumed that
M1 can not be repaired if M3 is working.
Consequently in Gd3,ext , repair event r1 can occur only
from states q0,4 or q2,4.
However, in cases 3 and 4 described in the last
section, we demonstrated that after generating f1 and
f2, Gd3,ext is activated and directed to q0,4 or q1,4 states
(figure 5). Two cases can therefore be distinguished.

Case 5) starting state of Gd3,ext is q0,4 (f2
2,2 in figure

6.a).
r1 can then occur from q0,4 or q2,4

1) Suppose that r1 has occurred from q0,4,

}{0,4

*
q d3 d3 0,4 0,4K | (q , ) q= ω∈ ∑ δ ω = , we mark q0,4

and then

4,0qK = [(b3b4 + b4b3)(e4b4 + e3b3)*(e3e4 + e4e3) + b3e3

+ b4e4]*

⇒
0,4d3 d2 qπ (K )→ = (b4e4)*

d2,ext in ,d2 1So δ (q , r ) =

d2,ext in ,d2 1So δ (q , r ) =

1,1 2,2 0,4d2 0 ,3 d3 d2 d1 d3 n d1 q q q 0,3δ (q , π (π (π (K )K )K ) q=→ → →
 (figure 6.b).

2) if r1 has occurred from q2,4, then

}{2,4

*
q d3 d3 0,4 2,4K | (q , ) q= ω∈ ∑ δ ω = , by marking

q2,4 we obtain 
2,4d3 d2 qπ (K )→ = (b4e4)* b4

So d2,ext in ,d2 1δ (q , r ) =

1,1 2,2 2,4d2 0 ,3 d3 d2 d1 d3 n d1 q q q 2,3δ (q , π (π (π (K )K )K ) q=→ → →
 (figure 6.b)

Case 6) if the starting state of Gd3,ext is q1,4 (f2
3,2 of

figure 6.c), applying theorem 2  provides us with the
same results as those of case 5.

6. CONCLUSION

We conclude that the proposed method ensures
commutation between different models of an overall
system reacting to exceptional situations, such as
failure event occurrence A major contribution of this
paper is that it considers reactive systems with
different objectives. Each objective (or operating
mode) is represented by a process model. If we
assume that different models develop independently,
the main problem is then to de-activate model Gλi and
to commute to model Gλj, which will be considered as
the current process model until an exceptional event
occurs. A formal framework based on tracking events
is proposed in to ensure commutation. This
framework extends for the generalization case the
projection definition. Theorems 1 and 2 represent the
main contribution of this paper; they allow us to
determine with a recurrent form the arrival state of a
model after any commutations. Results presented in
(Kamach et al, 2003) allow us to obtain controller
synthesis for each operating mode.
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