
Abstract-- In this paper, we propose an approach which considers 
different models of a process (multi-model approach) based on 
the supervision theory of Ramadge and Wonham (RW) [1] [2]. 
Our contribution enables us to take into account various models 
which represent different operating modes of the process. In this 
approach only modes that ensure the same operating mode are 
actives while  the others must be put into their respective inactive 
state. The problem of commutation between all designed models 
is formalised by a proposed framework which allows to 
determine each model and the commutation conditions. 
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I. INTRODUCTION 
In the supervisory control theory of Ramadge and Wonham 
[1] [2] [3] some control theory problems, such as synthesis of 
controlled dynamic invariant system by feedback, and 
concepts such as controllability and non blocking have been 
investigated. However, in this theory the plant is often a 
product of a number of simple components. Thus its state 
size increases exponentially with the number of components 
and synthesising a controller becomes laborious. 
A standard way to handle state explosion is by decentralised 
control. This approach consists of decomposing a system to 
be controlled G into subsystems Gi [5] [6] [7] for which local 
supervisors are fairly easy to obtain. Furthermore, reactive 
systems are subject to failures. This type of systems must be 
flexible in order to behave under controlled risks and 
allowing continuity of service which represents the prime 
aim of this paper. Flexibility is expressed by different 
operating modes of the system. In this paper a decentralised 
approach is used to model each operating mode and strategy 
commutation from an operating mode to another one. In our 
case only one operating mode is active at the some time. A 
framework is proposed to ensure the commutation. 

II. MODELLING OF A MULTI-MODEL REACTIVE SYSTEM 

Guaranteed functioning under failure causing downgraded 
production, yet allowing  continuity of service, represents the 
prime aim of this section. 
Reactive systems are subject to failures. This type of system 
must be flexible in order to behave under controlled risks. 
This flexibility is expressed by different  operating modes of 
the system. In this section we are  interested  in the modelling 
of these operating modes by applying a multi-model concept 
which consists of designing a model process for each 
operating mode. The problem of commutation between all 
designed models is formalised by a proposed framework. 
 To introduce this formal framework, we consider a simple 
example and we will be limited to two models of the system. 
In figure 1.b two different models of a global system (Unit 
production) are represented. This system is composed of 
three machines as shown in fig. 1. 
Initially the buffer is empty and M3 is carrying out another 
task outside the unit but which intervenes when M1 breaks 
down. With the event b1, M1 takes a workpiece from an 
infinite bin and enters q1 state but deposits it in the buffer B 
after completing its work. M2 operates similarly, but takes its 
workpiece from B and deposits it when finished in an infinite 
output bin. 
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Representation of a reactive system with different models 
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Fig. 1.  Scheme of Production unit 

M1 B 

bi : beginning of a task on Mi 
ei : end of task on Mi 
f1 : failure of M1 
r1 : repair of M1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now the aim is to determine each model and the 
commutation conditions. For this, we define Λ as a set 
containing indices of all models composing the global system 
with card(Λ) = n < ∞. 
Card(Λ) represents  the number of models to be designed. In 
our case Λ := {λ1, λ2} so card(Λ) = 2. 
Let λi ∈ Λ, we define Gλi as an uncontrollable DES which is 
taken to be an automaton  of the model λi  

Gλi = (Qλi , δλi, Σλi , q0,λi,  Qm,λi )1. 
 

We suppose that Σλi ∩ Σλj ≠ ∅ (i≠j) and initially the process 
model is Gλ1. Let Σ’ = ∪ij {αλi,λj} with αλi,λj represents the 
commutation events from Gλi to Gλj. In our example Σ’ = {f1, 
r1}. At the occurrence of αλi,λj the process model becomes 
Gλj. However, in this case, we must determine the reception 
state of Gλj after the commutation. To do this, we extend Gλi 
and Gλj by adding respectively an inactive state qin,λi to the 
state set of the model Gλi and an inactive state qin,λj to Gλj 
state set. At the occurrence of αλi,λj, Gλi will be lead to qin, λi 
and Gλj will be activated from qin, λj. However, the problem is 
to determine the arrival state of Gλj (respectively Gλi ) at the 
occurrence of αλi,λj (respectively αλj,λi). 
 
 
1 Qλi : Set of states, Σλi : the set of alphabet, δλi : the function 
transition, q0,λi : the initial state and Qm,λi : the Set of marked states. 

 
Let Gλi,ext = (Qλi,ext , δλi,ext, Σλi,ext , q0,λi,ext,  Qm,λi,ext ) with : 
- Qλi,ext = Qλi ∪ { qin, λi} 
- Σλi,ext = Σλi ∪ Σ’ 

- q0,λi,ext = q0,λi 

- Qm,λi,ext = Qm,λi 
- δλi,ext is defined as follows : 

1. ∀ q ∈ Qλi and ∀ σ ∈ Σλi, if (δλi(q, σ)!)2, 
then δλi,ext(q, σ) = δλi(q, σ). 

2. ∀ q ∈ Qλi from which αλi,λj can occur, 
then δλi,ext(q, αλi,λj) = qin,λi. 

δλi,ext(qin,λi, αλj,λi) will be defined later. 
 
Now let us define Gλj,ext to be the extended model of Gλj. 
Gλj,ext = (Qλj,ext , δλj,ext, Σλj,ext , q0,λj,ext, Qm,λj,ext ) with :  
- Qλj,ext = Qλj ∪ { qin,λj} 
- Σλj,ext = Σλj ∪ Σ’ 
- q0,λj,ext = qin,λj 
- Qm,λj,ext = Qm,λj 
- δλj,ext is defined as follows: 

1. ∀ q ∈ Qλj and ∀ σ ∈ Σλj, if (δλj(q, σ)!) 
then δλj,ext(q, σ) = δλj(q, σ). 

2. ∀ q ∈ Qλj from which αλj,λi can occur, 
then δλj,ext(q, αλj,λi) = qin,λj. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The objective now is to define δλj,ext(qin,λj, αλi,λj). 

 
2 δλi(q, σ)! means that δλi(q, σ) is defined 

Fig. 2.  Two possible models of the production unit 
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Fig. 3.  Extended models of Gλ1 and Gλ2 
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Note that initially Gλj,ext is in inactive state qin,λj. At the 
occurrence of an event αλi,λj, Gλj,ext must leave qin,λj in order 
to reach a state q ∈ Qλj. As shown in fig. 3, at the occurrence 
of event f1, Gλ2,ext, which is in qin, will be lead to q0, q1, q2 or 
q3. So Gλ2,ext becomes nondeterministic. In order to avoid this 
nondeterministic situation, we propose the following 
procedure : 
Let R(Gλj, qin,λj, αλi,λj) be the set of reachable states from qin,λj 
by the occurrence of αλi,λj. To determine this set, we 
introduce πλi,λj : Lαλi,λj (Gλi, q0,λi)3 →(Σλi∩Σλj)∗ with : 
 
πλi,λj(ε) = ε and 
  πλi,λj(s)σ if σ ∈ (Σλi∩Σλj). 
πλi,λj(sσ) =  
  πλi,λj(s) otherwise.  
 
That is, πλi,λj is a projection whose effect on a string s ∈ 
(Σλi)∗ is to erase the elements σ of s that do not belong to 
(Σλi∩Σλj). πλi,λj(sσ) allows the identification from Gλj of the 
output states of the intersection elements of Gλi when αλi,λj 
occurs. We achieve the projection definition by defining  
(πλi,λj (sσ))f as the last event of string sσ over πλi,λj. 
 
For example, in the fig. 3, we can determine πλ1,λ2(b1) = ε, 
πλ1,λ2(b1b2) = b2 and πλ1,λ2(b2e2b1) = b2e2 then  
(πλ1,λ2(sσ))f = (πλ1,λ2(b2e2b1))f = e2. 
 
Now from the definition of πλi,λj two cases are possible : 
(πλi,λj(sσ))f = ε (case1) or (πλi,λj (sσ))f ≠ ε (case 2). 
 
Case 1 : 
(πλi,λj(sσ))f = ε means that no event of (Σλi∩Σλj) has occurred 
i.e. no intersection element works. 
 
For example, from fig. 4 we assume that only M1 is working 
and Gλ1 is in q1 (because of the possible generation of f1 after 
the generation of b1 ).  
Since no event of Σλ2 has occurred. So at the occurrence of 
f1, Gλ2 will be lead to the initial state q0 of Gλ2. 
Thus R(Gλ2, qin, f1) = q0 and δλ2,ext(qin, f1) = q0. 
 
Generally if (πλi,λj(sσ))f = ε, then R(Gλj, qin,λj, αλi,λj) = q0,λj 
and so δλj,ext(qin,λj, αλi,λj) = q0,λj. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 Lαλi,λj

 (Gλi, q0,λi) := {s ∈ L(Gλi) / post(s) = αλi,λj} with post(s) 
represents the next event to be occurred after the generation of s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 2 : 
Now suppose that (πλi,λj(sσ))f ≠ ε i.e. at least one intersection 
element is working. 
 
For example, Suppose that in Gλ1 of fig. 4, b2 has occurred. 
Then (πλ1,λ2(b2))f = b2. So from qin, Gλ2 can be lead to q2 or q3 
thus presenting a nondeterministic. To avoid this situation we 
introduce the following lemma whose proof is not provided 
here because of the space limitation. 
 

Lemma 1 : 
δλj,ext(qin,λj, αλi,λj) is an unique state which is given by 
δλj,ext(qin,λj, αλi,λj) = δλj(q0,λj, πλi,λj(sσ)). 
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Fig. 4.  Extended models of  Gλ1 and Gλ2 for case 1 
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Fig. 5  Extended models of Gλ1 and Gλ2 for case 2 
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From fig. 5 : 
δλ2,ext(qin, f1) = δλ2(q0, πλ1,λ2(b1b2)) = δλ2(q0, b2) = q2. Thus if 
(πλi,λj(sσ))f ≠ ε then δλj,ext(qin,λj, αλi,λj) = δλj,ext(q0,λj, πλi,λj (sσ)). 
 
Now suppose that Gλi is inactive i.e. Gλi is in qin,λi and Gλj is 
active i.e. Gλj is in a state qλj ∈ Qλj. If the event αλj,λi occurs, 
Gλj will be inactive but Gλi will leave qin,λi to a state qλi ∈ Qλi 
. We must then as previously define δλi,ext (qin,λi, αλj,λi). To do 
this, we introduce πλj,λi which is defined as follows: 
πλj,λi: Lαλj,λi

(Gλj, qin,λj) → (Σλi∩Σλj)∗ 

 
πλj,λi (ε) = ε and 
  πλj,λi(s)σ if σ ∈ (Σλi∩Σλj). 
 πλj,λi(sσ) = 
  πλj,λi(s) otherwise. 
 
For example, from fig. 6 πλ2,λ1(b3) = πλ2,λ1(b3e3) = ε, but 
πλ2,λ1(b3b2) = b2 and πλ2,λ1(b3b2e2) = b2e2. 
 
From the definition of πλj,λi two cases, are possible : 
 (πλj,λi(sσ))f = ε (case 3) or (πλj,λi(sσ))f ≠ ε (case 4). 
 
Case 3 : 
(πλj,λi(sσ))f = ε means that no event of Σλi∩Σλj has occurred 
and Gλi  must be lead to a state where the intersection 
elements of Gλi and Gλj are respectively in their initial states.  
From fig. 6, q0 and q1 are possible in Gλ1,ext. The objective is 
to keep only one state by consulting (πλi,λj (s′σ′))f. 
 
Case 3.a : if (πλi,λj (s′σ′))f = ε then R(Gλj, qin,λj, αλj,λi) = q0,λj. 
So from q0,λj and (πλj,λi(sσ))f = ε it can be seen that the 
intersection elements are in their initial state in Gλj. Thus 
when commuting from Gλj to Gλi we will lead Gλi to a state 
where the intersection elements are in their initial state. This 
state is inevitably q0,λi.  
Consequently δλi,ext(qin,λi, αλj,λi) = q0, λi. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case 3.b : if (πλi,λj(s′σ′))f ≠ ε then the intersection elements 
stay at δλi(q0,λi, πλi,λj(s′σ′)). 
Thus δλi, ext(qin, λi, αλj,λi) = δλi(q0,λi, πλi,λj(s′σ′)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 4 : 
Now suppose that (πλj,λi(sσ))f ≠ ε. At this level two cases can 
be differentiated : (πλi,λj (s′σ′))f = ε or (πλi,λj(s′σ′))f ≠ ε. 
 
Case 4.a : (πλj,λi(sσ))f ≠ ε and (πλi,λj(s′σ′))f = ε. This means 
that before commutation, no event in (Σλi∩Σλj) has occurred. 
As shown in case 1, if (πλi,λj(s′σ′))f = ε then  
R(Gλj, qin,λj, αλi,λj) = q0,λj . In the other hand (πλj,λi(sσ))f  ≠ ε 
so the events in (Σλi∩Σλj) have occurred from q0,λj. 
Thus R(Gλi, qin,λi, αλj,λi) = δλi(q0,λi, πλj,λi(sσ)). 
 Consequently δλi,ext(qin,λi, αλj,λi) = δλi(q0,λi, πλj,λi(sσ)). 
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Fig. 7.  Extended models of Gλ1 and Gλ2 for case 3.b 
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Fig. 6.  Extended models of Gλ1 and Gλ2 for case 3.a Fig. 8.  Extended models of Gλ1 and Gλ2 for case 4.a 
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Case 4.b : (πλj,λi(sσ))f ≠ ε and (πλi,λj(s′σ′))f ≠ ε. 
(πλi,λj (s′σ′))f ≠ ε lead to R(Gλj, qin,λj, αλi,λj) = δλj(q0,λj, 
πλi,λj(s′σ′)) (case 2). 
(πλj,λi(sσ))f ≠ ε means that events in (Σλi∩Σλj) have occurred 
from q0,λj i.e. δλj(q0,λj, πλj,λi(sσ))! in Gλj. We conclude that  
δλi(qin,λi, αλj,λi) = δλi(q0,λi, πλi,λj(s′σ′)πλj,λi(sσ)) i.e.  
R(Gλi, qin,λi, αλj,λi) = δλi(q0,λi, πλi,λj(s′σ′)πλj,λi(sσ)). 
 
From figure 4.b.2, we suppose that πλ1,λ2(s′σ′) = b2 then  
δλ2(q0, b2) = q2 in Gλ2. Now we can introduce the lemma 2 
which allows to determine the arrival state when commuting 
from Gλj to Gλi. 

 
Lemma 2 : 
δλi,ext(qin,λi, αλj,λi) is an unique state which is given by 
δλi,ext(qin,λi, αλj,λi) = δλi(q0,λi, πλi,λj(s′σ′)πλj,λi(sσ)). 

 
(πλ2,λ1(sσ))f ≠ ε for example (πλ2,λ1(b3e2))f = e2 so machine 
M2 has finished its task. 
Thus δλ1,ext(qin, r1)  = δλ1(q0, πλ1,λ2(b2)πλ2,λ1(b3e2))  

= δλ1(q0, b2e2) = q0 in Gλ1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. CONCLUSION 
We conclude that the proposed method ensures commutation 
between different models of a global system reacting to 
exceptional situations such as a failure event occurrence The 
major contribution of this paper considers reactive systems 
with different objectives. Each objective (or operating mode ) 
is represented by a model of the process. Supposing that the 
different models evolve independently, the main problem is 
then to inactivate a model Gλi and to commute to a model Gλj 
which will be considered as the model of the process until the 
occurrence of an exceptional event. A formal framework 

based on tracking events is proposed in order to ensure the 
commutation. This framework introduces a new projection 
definition. 
Lemma 1 and 2 constitute the main result of this paper. They 
allow to determine the arrival state of a model after 
commutation. 
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Fig. 9.  Extended models of Gλ1 and Gλ2 for case 4.b 
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