Representation of a reactive system with different models
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Abstract-- In this paper, we propose an approach which considers
different models of a process (multi-model approach) based on
the supervision theory of Ramadge and Wonham (RW) [1] [2].
Our contribution enables us to take into account various models
which represent different operating modes of the process. In this
approach only modes that ensure the same operating mode are
actives while the others must be put into their respective inactive
state. The problem of commutation between all designed models
is formalised by a proposed framework which allows to
determine each model and the commutation conditions.
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I. INTRODUCTION

In the supervisory control theory of Ramadge and Wonham
[1]7[2] [3] some control theory problems, such as synthesis of
controlled dynamic invariant system by feedback, and
concepts such as controllability and non blocking have been
investigated. However, in this theory the plant is often a
product of a number of simple components. Thus its state
size increases exponentially with the number of components
and synthesising a controller becomes laborious.

A standard way to handle state explosion is by decentralised
control. This approach consists of decomposing a system to
be controlled G into subsystems G; [5] [6] [7] for which local
supervisors are fairly easy to obtain. Furthermore, reactive
systems are subject to failures. This type of systems must be
flexible in order to behave under controlled risks and
allowing continuity of service which represents the prime
aim of this paper. Flexibility is expressed by different
operating modes of the system. In this paper a decentralised
approach is used to model each operating mode and strategy
commutation from an operating mode to another one. In our
case only one operating mode is active at the some time. A
framework is proposed to ensure the commutation.

II. MODELLING OF A MULTI-MODEL REACTIVE SYSTEM

Guaranteed functioning under failure causing downgraded
production, yet allowing continuity of service, represents the
prime aim of this section.

Reactive systems are subject to failures. This type of system
must be flexible in order to behave under controlled risks.
This flexibility is expressed by different operating modes of
the system. In this section we are interested in the modelling
of these operating modes by applying a multi-model concept
which consists of designing a model process for each
operating mode. The problem of commutation between all
designed models is formalised by a proposed framework.

To introduce this formal framework, we consider a simple
example and we will be limited to two models of the system.
In figure 1.b two different models of a global system (Unit
production) are represented. This system is composed of
three machines as shown in fig. 1.

Initially the buffer is empty and Mj; is carrying out another
task outside the unit but which intervenes when M, breaks
down. With the event b;, M, takes a workpiece from an
infinite bin and enters q; state but deposits it in the buffer B
after completing its work. M, operates similarly, but takes its
workpiece from B and deposits it when finished in an infinite
output bin.
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b; i : beginning of a task on M;
> M; ¢; : end of task on M;

f; : failure of M,
1y : repair of M;

Fig. 1. Scheme of Production unit
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Fig. 2. Two possible models of the production unit

Now the aim is to determine each model and the
commutation conditions. For this, we define A as a set
containing indices of all models composing the global system
with card(A) =n < co.

Card(A) represents the number of models to be designed. In
our case A := {Ay, Ay} so card(A) = 2.

Let A; € A, we define G;; as an uncontrollable DES which is
taken to be an automaton of the model A;

G).i = (QM > Blia ZM > qois Qm,).i )1-

We suppose that Z;; N Iy # & (i#j) and initially the process
model is Gy. Let T = Ujj {oizi with oy, represents the
commutation events from G;; to Gy;. In our example = = {f},
ri}. At the occurrence of oy, the process model becomes
G;;. However, in this case, we must determine the reception
state of G, after the commutation. To do this, we extend Gj;
and G,; by adding respectively an inactive state qj,y; to the
state set of the model Gy; and an inactive state qiyyj to Gy;
state set. At the occurrence of o, ,j, Gy; will be lead to gy, 1
and G,; will be activated from gy, ,j. However, the problem is
to determine the arrival state of Gy; (respectively Gy; ) at the
occurrence of oy, (respectively ay; ;).

''Qu : Set of states, X, : the set of alphabet, &; : the function
transition, qoi : the initial state and Q,,,; : the Set of marked states.

Let G}\i,ext = (Qki,ext 5 Ski,exls 2?»i,exl 5 qO,M,exl» Qm,}\i,ext) Wlth :
= Quiext = Qui Y { Qin i}
) Diiext = 2 U X
- qo,niext = o
- Qm,}\i,ext = Qm,}»i
- Oyiext 1s defined as follows :
. VqeQgandV o e Iy, if (3i(g, 0)!)2,
then 8 ex(d, ©) = 8i(q, ).
2.V q e Q; from which oy, can occur,
then &y ex(q, ipg) = dinai-
Ski,ext(qin‘lia (x).j‘li) will be defined later.

Now let us define G, oy to be the extended model of Gy;.
ij,exl = (Q}\j,ext } 6?»j,ext» z“}\j,ext } qO,}\j,exty Qm,?»j,exl) with :
= Qujext = Qi Y { Qing
- Dijext =2V X
- qo.2j.ext = Qinj
- Qm,}\j,ext = Qm,}»j
- 8y ext 18 defined as follows:
1. v qe Qlj and Vo e Z;\j, lf(S)J(q, C)')
then 8y ex(q, ©) = 8(q, ©).
2.V q e Qy from which oy ,; can occur,
then &y ex(q, Mjai) = dingy-

le,ext .

GkZ,ext

Fig. 3. Extended models of G;; and G;,

The objective now is to define 6y cx(qinj» 02 n)-

2 32i(q, 0)! means that 5,i(q, o) is defined



Note that initially Gyjey is in inactive state i,j. At the
occurrence of an event oy, Gyjex must leave gy, ; in order
to reach a state q € Q4. As shown in fig. 3, at the occurrence
of event f}, Gy ex, Which is in gy, will be lead to qq, q;, q2 or
Q3. S0 Gy, ex becomes nondeterministic. In order to avoid this
nondeterministic  situation, we propose the following
procedure :
Let R(Gyj, Qinaj> 04.ipj) be the set of reachable states from gy, ;
by the occurrence of oy;;;. To determine this set, we
introduce i - Luki,kj (GM, ('.103\1)3 —)(ZMQZM)* with :
M.izj(¢) = € and

TI;LL}\J'(S)G ifo e (ZMQZ}\J’).
Ti,3i(80) =

mi,j(s) otherwise.

That is, m;,; is a projection whose effect on a string s €
()" is to erase the elements o of s that do not belong to
(Z2iNMZy)). mizj(so) allows the identification from G;; of the
output states of the intersection elements of Gj; when oy );
occurs. We achieve the projection definition by defining
(3135 (s0))¢ as the last event of string sG over m; ;.

For example, in the fig. 3, we can determine m,; (b)) = ¢,
m.1,02(b1b2) = by and my,; 2(baezby) = bye; then
(M.1,22(56))r = (M1 02(b2€2b1))s = €5.

Now from the definition of m,;,; two cases are possible :
(myi2i(s0))e = € (casel) or (my;,; (s0))s # € (case 2).

Casel:
(mi,(80))r = € means that no event of (2,;N,;) has occurred
i.e. no intersection element works.

For example, from fig. 4 we assume that only M; is working
and Gy, is in q; (because of the possible generation of f; after
the generation of b, ).

Since no event of X;, has occurred. So at the occurrence of
f1, G;, will be lead to the initial state gy of G-

Thus R(Gy.2, qin, f1) = do and 62.ext(ins T1) = qo-

Generally if (nki,kj(sc))f =&, then R(GM, Qin,nj» aki,kj) = oy
and $0 8 ex(Qinj> i) = dop-

G}» 1,ext

3 L“mj (Gair Qo) = {s € L(Gy) / post(s) = ouiz} with post(s)

represents the next event to be occurred after the generation of's.

G?»Z,exl :

Fig. 4. Extended models of G;, and G;, for case 1

Case?2:
Now suppose that (my;(sc))s # € i.e. at least one intersection
element is working.

For example, Suppose that in G;; of fig. 4, b, has occurred.
Then (T[;yl‘;vz(bz))f = bz. So from ins GKZ can be lead to Jz Or Q3
thus presenting a nondeterministic. To avoid this situation we
introduce the following lemma whose proof is not provided
here because of the space limitation.

Lemma 1 :
Oyjext(qinyjp Oning) IS an unique state which is given by
Skj,ext(qin,kp Oﬂxi.xﬂ = ij(%,xj, ﬂ'xi,xj(sc))

€1
Gitext:

G?»Z,exl :

Fig. 5 Extended models of G,; and G;, for case 2



From fig. 5 :

S2,ext(@in» T1) = 832(qo> M1 22(b1b2)) = 832(qo, b2) = qa. Thus if
(1i,j(86))¢ # € then 8y ex(Qinj> Ming) = Onjext(Qoj> Ting (50)).

Now suppose that Gy; is inactive i.e. Gy;is in iy and Gy is
active i.e. Gy; is in a state qy; € Qy;. If the event ay,,; occurs,
Gj; will be inactive but Gy; will leave i, ; to a state qu; € Qy;
. We must then as previously define 8, ex (Qini» Oji)- To do
this, we introduce m;,; which is defined as follows:

Tait La, . (G, Qingg) = EinZag)”

ONjhi
T i (e) = e and

nkjﬁ;\i(s)cs ifo e (ZMQZ}\J’).
M2i(s0) =
m,i(s) otherwise.

For example, from fig. 6 m (bs) = muai(bses) = €, but
Mz,m(b3b2) =b, and “Az,m(b3bzez) =bye,.

From the definition of my;; two cases, are possible :
(m,i(50))s = € (case 3) or (my,i(so))s # € (case 4).

Case3:

(m3j2i(s0))r = € means that no event of Z,;NX;; has occurred
and G;; must be lead to a state where the intersection
elements of G;; and Gj; are respectively in their initial states.
From fig. 6, qy and q, are possible in Gy, ¢x. The objective is
to keep only one state by consulting (m; ; (S0))e

Case 3.a: if (TEM,;LJ' (S’G’))f = ¢ then R(G;Lj, Qin,%j» a}»j,}»i) = qonj-
So from qoj and (my,i(so))r = € it can be seen that the
intersection elements are in their initial state in Gy;. Thus
when commuting from Gy; to Gy; we will lead Gy; to a state
where the intersection elements are in their initial state. This
state is inevitably ;.

Consequently 8 ext(Tinis ajai) = o, 2i.

G}»l,exl :

Fig. 6. Extended models of G;,; and G;, for case 3.a

Case 3.b: if (TCM’M‘(S'G’))f # ¢ then the intersection elements
stay at 8,i(qoi» Mixi(sG)). o
Thus &), exd(in, 2> (X;Lj‘xi) = 82i(qonis nki,kj(s G)).

Gm,ext :

GAZ,CXt :

Fig. 7. Extended models of G;,; and G, for case 3.b

Case4:
Now suppose that (m;,i(s0))¢ # €. At this level two cases can
be differentiated : (1, (so))=¢or (TCM’M’(S'G’))fi €.

Case 4.a: (m,i(so)); # € and (TEM,M(S/G'))f = g. This means
that before commutation, no event in (X;;NZy;) has occurred.
As shown in case 1, if (nM,M(s'cs'))t: ¢ then

R(ij, qiu,kja aki,kj) = qu . In the other hand (TIZM’M(SG))f * &
so the events in (Z);NZ;;) have occurred from qg ;.

Thus R(Gyj, Ginpi» Ot;.j,xi) = 6,i(qoi» ﬂxj,xi(SG))-

Consequently 6); exi(Qinnis 2j,21) = 02i(do,is Tj,2i(SO))-

G}» lext -

Fig. 8. Extended models of G;,; and G, for case 4.a



Case 4.b : (m);,i(so))¢ # € and (nki’kj(srcr))f;t €.

(nki,kj ,(S’/G'))f # ¢ lead to R(ij, in2j> aki,kj) = 5xj(<10,xj,
mipj(s o)) (case 2).

(myji(80))r # € means that events in (2;;NZ;;) have occurred
from qg y; i.€. 83j(qo.j Mj2i(50))! in Gy; We conclude that
S2i(Aini> M2 21) = Sni(Qo,nis ﬂxi,xj(srﬁr)%j,xi(sc)) ie.

R(Gyi» Qingi> i) = S2i( o> Ti(S 0 )M i(S0)).

From figure 4.b.2, we suppose that nMM(srcr) =b, then
S32(qo, b2) = q; in Gj,. Now we can introduce the lemma 2
which allows to determine the arrival state when commuting
from Gy, to Gy;.

Lemma 2 :
Bpiext(Qinyi Ojny) Is an unique state which is given by
Sniext(Ginir Wajpd) = Onilqori Toin(s ©)7j0i(56)).

(m3221(50))r # € for example (m,,1(bse,))r = €, so machine
M, has finished its task.
Thus 61 ex(Qin 1) = 82.1(qo, Tr1,02(b2) T2 01(b3€2))

= 81(qo, baez) = qo in Gy

GM ext -

B

Fig. 9. Extended models of G;; and G, for case 4.b

III. CONCLUSION

We conclude that the proposed method ensures commutation
between different models of a global system reacting to
exceptional situations such as a failure event occurrence The
major contribution of this paper considers reactive systems
with different objectives. Each objective (or operating mode )
is represented by a model of the process. Supposing that the
different models evolve independently, the main problem is
then to inactivate a model G;; and to commute to a model Gy;
which will be considered as the model of the process until the
occurrence of an exceptional event. A formal framework

based on tracking events is proposed in order to ensure the
commutation. This framework introduces a new projection
definition.

Lemma 1 and 2 constitute the main result of this paper. They
allow to determine the arrival state of a model after
commutation.
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