
A Design Method for Synthesizing
Control-Command Systems out of Reusable

Components

Salam HAJJAR, Emil DUMITRESCU, Laurent PIETRAC,
Eric NIEL

Université de Lyon, INSA Lyon, Ampère (UMR5005),
F-69621 Villeurbanne, France

(e-mail: firstname.lastname@insa-lyon.fr).

Abstract: This paper investigates an industrial design issue related to code reusability: building
control-command systems out of Commercial off the shelf (COTS) components. The design
method proposed uses in synergy the formal verification (FV) and the discrete controller
synthesis (DCS) techniques. COTS are formally specified using temporal logic and/or executable
observers, and coded according to their formal specification. New functions are built by
assembling COTS together. The COTS assembly operation is not error free: the resulting
assembly may not achieve the desired function it is supposed to. For these reasons, COTS
assemblies need to be formally verified and if errors are found, they must be corrected using
DCS. The resulting system is ready for hardware (e.g. FPGA) implementation.

Keywords: Formal verification, discrete controller synthesis, COTS, simulation, embedded
systems, control-command.

1. INTRODUCTION

Due to design constraints bounding delays, costs and en-
gineering resources, component re-usability has become a
key issue in embedded design. The expertize of the design
process has been shifted from code writing to the efficient
management of Commercial off the Shelf (COTS) libraries.
By assembling adequately COTS components, new func-
tions can be quickly built. Paradoxically, the brute force
application of this method has lead to important design
and maintenance costs, far from the theoretically expected
gains. This is caused by an antagonism between the gener-
icity expected for a COTS, and the context-specific needs
which fail to be handled correctly by that COTS. Indeed,
by assembling COTS which have been separately designed,
the resulting interactions cannot be entirely anticipated.
Thus, unwanted behaviors may occur, although each com-
ponent taken separately is considered free of errors. En-
suring a safe behavior of the COTS-based system is an
important challenge. It calls for safe design methods and
techniques, ensuring functional correctness. Besides sim-
ulation, the model checking technique (Clarke, 2008) is
vital for discovering subtle bugs, which are very difficult
to uncover by simulation. Even though this technique has
become mature, the designer must correct errors manually,
which is an error-prone task: by attempting to manually
correct an error, another error is introduced, which creates
a vicious circle situation. This situation emphasizes the
need to complete the automatic error detection, by an
automatic error correction.

This work advocates the use of the Discrete Controller
Synthesis (DCS) technique (Marchand et al., 2000) in
order to generate correct-by-construction correcting code.

The design method proposed in this paper highlights the
synergy and the interdependence between these formal
tools for achieving control-command COTS-based design.

The development of component-based design has been
dependent on the growing maturity of formal techniques.
(Addy and Sitaraman, 1999) have proposed the formal-
ization of the COTS interface, in order to facilitate their
composition. A similar formalization is proposed by (de Al-
faro and Henzinger, 2001) with the interface automata,
capturing compositional aspects such as environment as-
sumpions. Interface generation is also considered by (Roop
et al., 2009), in order to solve mismatches between inter-
acting protocols. A formalization of the COTS behavior
has been proposed by (Guerrouat and Richter, 2005), using
extended finite state automata. On a more practical point
of view (Abts, 2002) show that COTS-based design faces
in general exponential blowup of maintenance costs. This
phenomenon is due to the lack of control on the COTS be-
haviors, which are handled as black box components. (Xie
et al., 2007) show the importance of the model checking
technique, together with the assume-guarantee reasoning
in COTS-based design. The discrete controller synthesis
has been suggested by (Altisen et al., 2003) to synthesize
properties-enforcing layers, on the composition of local
robot controllers.

This paper takes over the issues presented by (Hajjar et al.,
2013), and tackles two context-specific concerns related to
the application of DCS. On the one hand, hardware target
implementations require a particular representation of the
synthesized controller. On the other hand, the existence of
interfaces between control-command components, requires
additional care: sometimes, generated controllers become

part of the interface between two or more COTS and
their behavior should not contradict the behavior expected
for that interface. As it is shown in the sequel, this
requirement cannot be handled by DCS alone. The control
solution needs to be formally verified. The validity of
this approach is demonstrated on an industrial case study
concerning a train control-command system.

The rest of the paper is organized as follows: section 2
recalls the backgrounds of the models and techniques used
throughout the method proposed in this paper. Section
3 highlights the structural issues in applying DCS to
hardware designs. Section 4 presents a variant of the DCS
technique, taking into account environment assumptions.
The COTS-based design method is presented in section 5.
Section 6 presents the controller validation issues. Section
7 illustrates this design method on an industrial design.

2. BACKGROUND AND DEFINITIONS

The Boolean Finite State Machine (FSM). This model
is very useful in our context because it is structurally
and dynamically close to the hardware control-command
systems we handle. Indeed, these are composed of Boolean
variables, implementing either inputs, states or outputs.
Thus the Boolean FSM is defined as a tuple M =
〈q0, X,Q, δ, PROP, λ〉, where q0 designates the initial
state, X a set of Boolean inputs, Q is the set of states of
M , δ : X ×Q→ Q is the transition function, PROP is a
set of atomic Boolean propositions, and λ : Q→ B|PROP |

is a labelling function modeling the outputs of M . This
formal model is automatically extracted from design code
written in VHDL, or in a similar proprietary framework.
These programs feature systematically a hardware clock,
which triggers all the transitions of the design, and which
is considered to be common to the whole design. Under
these circumstances, the clock representation can be left
implicit inside the formal model.

Formal Requirement Specifications. Formal specifica-
tions are expressed either logically, as temporal logic for-
mulæ, written in the PSL (IEEE, 2005) standard language,
or operationally, as a “program” modeled formally by a
Boolean FSM and referred to as a monitor.

Control-command COTS are the basic building blocks
considered in this work. A stand-alone COTS component
C is defined as a 4-tuple C = 〈IC , MC , AC , GC〉,
where IC is the COTS’ input-output interface, MC is the
behavioral model of the COTS expressed as a Boolean
FSM, AC is a set of assumptions on the expected behavior
of the environment of C and GC is a set of guarantees on
the behaviorMC of C. Both the assumptions and the guar-
antees are expressed formally, either as PSL formulæ or
as monitors. A COTS C satisfies a guarantee g ∈ GC

provided an assumption a ∈ AC holds. This is denoted:

MC , 〈a〉 |= g

A COTS is considered rather a “mature” component than
a “perfect” one; it probably has hidden bugs, and building
designs out of existing COTS elements also amounts to
mixing unwanted behaviors from each building block. The
COTS’s behavior is expressed as design code, using a stan-
dard and/or proprietary framework. All the components

handled in this work are automatically translatable into
Boolean FSMs.

COTS assembly. This is the act of composing COTS
components together, in order to produce a new behavior.
This operation produces a new component which is not
considered as a COTS until its maturity is assessed. The
assembly operation produces new sets of assumptions and
guarantees: assumptions can be implied by newly added
guarantees and need not be assumed anymore. They can
also be contradicted by newly added guarantees, in which
case they cannot be assumed anymore. These issues are
not developed in this paper. The behavior of a COTS as-
sembly is given by the synchronous composition operation,
denoted ||, between their corresponding behavioral models.
The COTS assembly operation is denoted by the operator
||C .

The discrete controller synthesis (DCS) This
technique enforces the satisfaction of a safety requirement
P on a given Boolean FSM model M by attempting to
make invariant the greatest subset of states of M which
satisfy P . The input set of M is divided into two disjoint
subsets: controllable Xc and uncontrollable Xuc inputs.
The target set satisfying P is made invariant by disabling
all the transitions of M leading out of it. This is achieved
by generating a supervisor, which assigns adequate values
to the controlable inputs Xc.

The DCS proceeds in two steps: (1) computation of the
invariant under control (IUC) set and (2) computation of
the supervisor. The computation of IUC calls recursively
a basic step: finding the set of controllable predecessors of
a given set of states E ⊆ Q. This step is implemented by
the CPRED operator:

CPRED(E, δ) = {q ∈ Q | ∀xu ∈ B|Xuc|,∃xc ∈ B|Xc|,

∃q′ ∈ Q : q′ = δ(q,xuc,xc, q) ∧ q′ ∈ E}
In other words, the state q is a controllable predecessor
of a state q′ ∈ E iff for any uncontrollable value xuc,
there exists a controllable value xc such that the transition
function δ leads to q′. The resulting invariant under control
set IUC is the fixed point of the equation:

IUC0 = {q | P is true in q}
IUCi+1 = IUCi ∩ CPRED(IUCi, δ)

A supervisor does not exist if the IUC set is empty or if
it does not contain q0. When it exists, the supervisor is
defined as: SUP = {(q,xc,xuc) | δ(q,xc,xuc) ∈ IUC}.

3. DCS FOR HARDWARE DESIGN

The supervisor provided by DCS is implemented as a
characteristic function:

SUP : Q× B|Xuc| × B|Xc| → B
defined as:

SUP(q,xuc,xc) = 1 iff (q,xuc,xc) ∈ SUP
The actual control of M requires solving the equation

SUP(s,xuc,xc) = 1

continuously, for each reaction of M , considering Xc as
unknown variables. This is not directly implementable
into hardware. The supervisor decomposition technique
presented in Dumitrescu et al. (2008b) is used in order to

obtain systematically the control architecture presented in
Figure 1.

System

Supervisor Ĉ

xu prop

qxc

xenv
c

Fig. 1. Target control architecture for hardware designs

The supervisor SUP is automatically decomposed into a
vector Ĉ of m Boolean functions, where m is the number
of controllable variables:

Ĉ =

 f1(q, xuc, x
env
c1 , f2, . . . , fm)

f2(q, xuc, x
env
c2 , f3, . . . , fm)

.
fm(q, xuc, x

env
cm)

Control non-determinism is handled by generating an
environment variable xenvc for each controllable variable
xc. The action of the controller is similar to filtering: at
each moment, depending on the current state q and on
xuc, xci is assigned either xenvci or ¬xenvci .

The resulting controller is a particular Boolean “FSM”
featuring only inputs and outputs, no states and no

transition function: M Ĉ = 〈∅, Xuc ∪Xenv
c ∪Q, ∅, ∅, Xc, Ĉ〉.

In the sequel, the decomposed supervisor Ĉ is referred to
as the controller.

It is worth noting that this control paradigm is totally
opposite to the one developped by the supervisory control
theory. Whenever the controller “filters” an input, it
interferes with the environment. Obviously, this situation
is globally undesirable but acceptable for control reasons;
however, this issue induces additional design constraints,
developed in Section 5.

A DCS illustrative example Consider the state-
based design illustrated in Fig 2. Let a property P =
always¬(E1 ∨ E2) be the target requirement to enforce
using DCS, by controlling the input variable go. The
IUC computation algorithm gives the following results:
IUC0 = {A,B,C}, IUC1 = {A,C}, IUC2 = {A,C} .

The final IUC set is {A,C}. The generated controller Ĉ
assigns the controllable variable go, so that the controlled
system always remains inside the set of states IUC, as
illustrated in Figure 3.

Fig. 2. A 5-states design to be controlled using DCS

Fig. 3. The controlled 5-states system

4. THE ENVIRONMENT-AWARE DCS (EDCS)

In the context of COTS-based design, environment as-
sumptions are of great importance. Most likely, the envi-
ronment of a given COTS consists of a collection of other
COTS, and no direct connection exists to the “physical
world”, made of sensors and of actuators. In this situation,
unlike a physical environment, the environment of a COTS
must feature a precise behavior so that the COTS at hand
can fulfill its function.

The conventional DCS algorithm does not support the
specification of environment assumptions. In order to han-
dle this additional information, a variant of the DCS algo-
rithm is proposed, called environment aware DCS (EDCS).
It redefines the computation of the controllable predeces-
sors, by assuming that at each step, the uncontrollable
inputs satisfy the environment assumptions. Each assump-
tion is modeled as safety properties aC ∈ AC concerning
the uncontrollable inputs. It is translated into an invariant
A : Q×B|Xuc| → B, defined as the set of all the transitions
of M satisfying ac:

A(q,xuc) = ∃xc : ac is true in state δ(q,xc,xuc)}

which is supposed to be always true.

CPREDenv(E, δ,A) = {q ∈ Q | ∀xuc ∈ B|Xuc|,

∃xc ∈ B|Xc|,∃q′ ∈ Q :

(q′ = δ(q,xuc,xc) ∧ A(q,xuc))→ q′ ∈ E}
The recursive application of CPREDenv produces an in-
variant under control set under an environment assump-
tion. This rule is less “pessimistic” with respect to the
uncontrollable input variables, and thus less restrictive.
The resulting IUC set is often larger than the one obtained
with conventional DCS.

EDCS illustrative example For a sample environ-
ment assumption stating that the uncontrollable req must
be asserted when the system is in state B: always(B →
req), the EDCS application computes the invariant under
control IUC = {A,B,C}. Unlike conventional DCS, state
B is not pruned, as req is supposed to be asserted whenever
this state is active, and thus, due to this assumption, the
error state E1 is not reached.

Fig. 4. Controller synthesis using EDCS

5. THE SAFE COTS-BASED DESIGN METHOD

The method proposed relies on the conjunction between
traditional design techqniues, such as simulation and for-
mal verification and the DCS. An overview of the design
flow is presented in figure 5. It highlights the conven-
tional steps, like COTS formalization and verification us-
ing assume-guarantee reasoning. This paper only focuses
on the use of DCS in order to correct a COTS assembly,
shown at step 3, and the verification of the controlled
system, shown at step 4.

The DCS application occurs after the failure of the formal
verification (step 2) applied to a safety requirement. The
most delicate operation here, is the construction of the
controllable input set, intended to be assigned by the
controller. The controllable candidates are supplied by
the model-checking counterexample. The designer choses
among these candidates, but should avoid controlling
inputs driven by sensors, or inputs carrying data.

The formal verification of the controlled system occurs at
step 4. It has two main motivations. As the generated
controller interferes with the environment of the controlled
system, it can be in contradiction with the environment as-
sumptions of this system. Safety environment assumptions
can be taken into account by EDCS, but liveness environ-
ment assumptions cannot. Thus, the first objective of this
verification step is to ensure that the liveness environment
assumptions are not broken, and thus, that the liveness
guarantees are preserved. Second, it must be ensured that
the controller satisfies application-specific requirements.
These are developed in the next section.

Fig. 5. Safe design flow

6. IMPLEMENTATION OF THE CONTROL LOOP

Even though the general control loop architecture pre-
sented in Section 3 fills the structural specific needs of
hardware design, there remain specific behavioral con-
straints that need to be guaranteed, and which cannot be
handled by (E)DCS.

Controllable inputs with soft reactive constraints. In
such situations, the decision procedure mentioned above
designates as controllable a request input, which is a part
of a synchronization mechanism. The 4-phase handshake

protocol is both a generic and representative mechanism
in hardware design. It is used for data exchange and
synchronization between components. It is implemented
by a pair of Boolean signals: a request and an acknowl-
edge. The handshake protocol starts when the request is
activated. The acknowledge is then activated, followed by
the request de-activation, and finally by the acknowledge
deactivation. This sequence is called a transaction. The
activation/deactivation events need to be associated to
actual Boolean values, usually 1 for the active value and
0 for the inactive value. Typically, transactions have an
arbitrary delay. It is only required that they last a finite
time. For this specific case, the desired control should im-

Fig. 6. Controlling transactions

System

Controller

data acknowledge

staterequestcontrolled

requestenv

(a) Controlled transaction architecture

clock

requestenv

requestcontrolled

acknowledge

(b) Desired controller behavior

plement one among the following behaviors: either prevent
a transaction from starting if its beginning is likely to
break the requirement to enforce, or let it start otherwise.
The transaction start is triggered by the environment,
through the requestenv input variable. This value should
be either forwarded or delayed by the controller, as shown
in figures 6 a and b.

The “event invention” phenomenon. A controller which
acts upon the request input is not aware of the notions
of activation or deactivation, but only manipulates the
values 1 or 0 of this input. At some moments, the value 1
can be forbidden (and thus the value 0 is forced), or vice-
versa. However, these two situations are not symmetric:
in the first case, the transaction does not start, while
in the second, the transaction is forced, or “invented”!
This is illustrated in figure 7 a. Usually, transactions also
carry data, and hence such a situation does not make
sense. Obviously, this is unacceptable. This requires to
make sure a posteriori that the controller never “invents”
transactions, and if it does, invalidate the control solution.

Hence it is vital to formally ensure the absence of “event-
invention” phenomena. The expression of this requirement
for a controllable varialbe x needs to mention systemati-
cally xenv, which is generated by (E)DCS, as explained in
Section 3. However, the variable xenv does not exist at the
moment DCS starts. It is not possible mention its name to
express requirements over the resulting controller. This is
why the event invention phenomenon cannot be forbidden,
but only detected by model checking.

Detection of “event inventions”. This behavior is sim-
ply checked by the PSL property:

Fig. 7. The event “invention” phenomenon

clock

requestenv

requestcontrolled

acknowledge

(a) Transaction “invention” by the con-
troller

NO EV ENT INV ENTION : always¬(requestcontrolled

∧ ¬requestenv)

In complement, it must also be established that a trans-
action cannot be delayed forever:

FINITE TRANSACTION = always(requestenv →
eventually acknowledge)

In order to prove these requirements, it can be needed
to assume that once the environment asserts the input
request requestenv, it is held until it is acknowledged:

REQUEST STABLE : always(requestenv →
((next stable(requestenv)) until acknowledge)

where the PSL operator stable is a built-in PSL operator:
stable(x) evaluates to true in every cycle where x did not
change its value with respect to the previous cycle.

If this verification step is successful, the resulting con-
trolled COTS can be considered as valid.

7. INDUSTRIAL APPLICATION

The method proposed above has been applied on a train
passenger access control-command system, featuring two
COTS: the Door and the Filling gap, as shown in fig-
ure 8. This case study has been provided by Bombardier
Transport, and has been used during the FerroCOTS
project (Jadot, 2009). The Door COTS Model is 4-tuple

Fig. 8. The COTS and their physical environment

Cd = 〈Id,Md, Ad, Gd〉 where

Id = {req open, req close, sns open, sns close, sns obst,
cmd open, cmd close, ack open, ack close}.

The behavior Md of the Door COTS is modeled by a
Boolean FSM shown in Figure 9. The output values are
assigned in each state. The train conductor issues open
or close requests via the req open or req close signals
and the control command answers with a corresponding
ackowledge, once the physical part has given the expected
reaction.

The preconditions required for the correct behavior of the
Door COTS are given by the set Ad = {ad1, ad2, ad3, ad4},
where ad1,2 express sensor liveness and ad3,4 the absence

of request cancelation: ad1 = always eventually (sns open)
and ad2 = always eventually (sns closed); ad3 = always
req open→ stable(req open) until ack open

The guarantees of the Door COTS are given by the
set Gd = {gd1 , ad2}. They express the fact that if the
door is requested to open or close the request is finally
treated. They are modeled by the PSL assertions gd1 =
always req open → eventually (ack open); gd2 = always
req close → eventually (ack close). The relationship be-
tween Ad and Gd are the following:

Md, 〈ad1, ad3〉 |= gd1 Md, 〈ad2, ad4〉 |= gd2

The Filling gap COTS is modeled similarly: Cfg =

Fig. 9. Door COTS behavioral model

〈Ifg,Mfg, Afg, Gfg〉 . Its function consists in deploying
and retracting the physical filling gap according to the
requests sent by the conductor via the inputs req deploy
and req withdraw.

The door/filling-gap assembly Cd||CCfg is modeled as
follows: Iasm = {Id ∪ Ifg}, Aasm = {Ad ∪ Afg}, Gasm =
{Gd∪Gfg}, Masm = Md||Mfg. It must implement an ad-
ditional requirement, expressing the coordination between
the door and filling gap operation for security reasons. This
requirement states that after an open request, the filling-
gap should always deploy before the door is open:

P asm : alwaysreq open→ ack deploy before ack open

This safety property is modeled as a monitor MPasm

illustrated in Fig 10. The COTS assembly does not

Fig. 10. Monitor MPasm modeling P asm

satisfy P asm and the model checking tool provides a
counter-example which highlights the fact that the inputs
req open, req close, req deploy, req withdraw are respon-
sible for this violation. By designating these inputs as
controllable, P asm is enforced on Masm by EDCS. The
resulting control architecture is shown in figure 11. The
validation of the controller, corresponding to the step 4 of

the design method, consists of formally verifying the prop-
erties mentioned in Section 6. For each controllable request
req a corresponding property must be checked: always
(reqenv → eventually ack. The absence of event invention
is checked by the properties: never (reqcontrolled∧¬reqenv).
Since all these properties are verified, it can be concluded
that the controller enforcing P asm is valid. An overview of

Fig. 11. The controlled passengers’ access system

the resulting behavior is presented in the simulation trace
figure 12. It can be noticed that at simulation time 10sec
the designer requests to open the door while the filling-gap
is not yet deployed. The controller filters this request until
the second 31 where the filling-gap sensor provides the
information that it is fully deployed and from that moment
the controller stops filtering the door opening request.
Regardless of the order in which the driver requests the
doors and filling gap operations, they always operate in
the safe order.

Fig. 12. Simulation of the controlled system

8. CONCLUSION

This paper has presented a safe design method for COTS-
based hardware embedded systems. This method uses in
synergy the Discrete Controller Synthesis and formal veri-
fication techniques in order to produce correct by construc-
tion COTS-based systems. Specific issues related to the use
of DCS in the hardware design context have been identified
and addressed: the structural compatibility between the

controller and the system to control, the integration of
environment assumptions in solving the DCS problem, and
the behavioral validation of the controller. The method
proposed also includes compositional reasoning but this
classical aspect has not been developed.

Future directions of this work aim at using DCS for inter-
face generation, as well as handling liveness requirements
enforcement. Another important direction is the compo-
sitional reasoning in the application of DCS to COTS-
basedd design.

REFERENCES

(2004). Ieee standard for vhdl register transfer
level (rtl) synthesis. IEEE Std 1076.6-2004 (Re-
vision of IEEE Std 1076.6-1999), 1–112. doi:
10.1109/IEEESTD.2004.94802.

Abts, C. (2002). Cots-based systems (cbs) functional
density – a heuristic for better cbs design. In Proceedings
of the First International Conference on COTS-Based
Software Systems, ICCBSS ’02, 1–9. Springer-Verlag,
London, UK, UK.

Addy, E.A. and Sitaraman, M. (1999). Formal specifi-
cation of cots-based software: a case study. In Pro-
ceedings of the 1999 symposium on Software reusability,
SSR ’99, 83–91. ACM, New York, NY, USA. doi:
10.1145/303008.303034.

Altisen, K., Clodic, A., Maraninchi, F., and Rutten, E.
(2003). Using controller-synthesis techniques to build
property-enforcing layers. In Proceedings of the 12th Eu-
ropean conference on Programming, ESOP’03, 174–188.
Springer-Verlag, Warsaw, Poland. ACM ID: 1765727.

Clarke, E.M. (2008). 25 years of model checking. chapter
The Birth of Model Checking, 1–26. Springer-Verlag,
Berlin, Heidelberg.

de Alfaro, L. and Henzinger, T.A. (2001). In-
terface automata. SIGSOFT Softw. Eng. Notes,
26(5), 109–120. doi:10.1145/503271.503226. URL
http://doi.acm.org/10.1145/503271.503226.

Dumitrescu, E., Ren, M., Pietrac, L., and Niel, E.
(2008a). A supervisor implementation approach in
discrete controller synthesis. In IEEE International
Conference on Emerging Technologies and Factory Au-
tomation, 2008. ETFA 2008, 1433–1440. IEEE. doi:
10.1109/ETFA.2008.4638585.

Dumitrescu, E., Ren, M., Piétrac, L., and Niel, É. (2008b).
A supervisor implementation approach in discrete con-
troller synthesis. In ETFA, 1433–1440.

Guerrouat, A. and Richter, H. (2005). A component-
based specification approach for embedded systems
using fdts. In Proceedings of the 2005 confer-
ence on Specification and verification of component-
based systems, SAVCBS ’05. ACM, New York,
NY, USA. doi:10.1145/1123058.1123073. URL
http://doi.acm.org/10.1145/1123058.1123073.

Hajjar, S., Dumitrescu, E., Niel, E., et al. (2012). A
component-based safe design method for train control
systems. In Embedded Real Time Software and Systems
ERTS. 3AF - SEE, Toulous, France.

Hajjar, S., Dumitrescu, E., Niel, E., et al. (2013). Safe de-
sign method of embedded control systems : Case study.
In 5èmes Journées Doctorales / Journées Nationales

MACS Ecole en Modélisation, Analyse et Conduite des
Systèmes dynamiques. Strasbourg, France.

IEEE (2005). Ieee standard for property specification
language (psl). IEEE Std 1850-2005, 1–143. doi:
10.1109/IEEESTD.2005.97780.

Jadot, J.Y. (2009). Ferrocots, from cable to chip.
Marchand, H., Bournai, P., LeBorgne, M., and Guernic,

P.L. (2000). Synthesis of discrete-event controllers
based on the signal environment. In In Discrete Event
Dynamic System: Theory and Application, 325–346.

Roop, P., Girault, A., Sinha, R., and Goessler, G. (2009).
Specification enforcing refinement for convertibility ver-
ification. In Proceedings of the 2009 Ninth International
Conference on Application of Concurrency to System
Design, ACSD ’09, 148–157. IEEE Computer Society.
ACM ID: 1673101.

Xie, F., Yang, G., and Song, X. (2007). Component-based
hardware/software co-verification for building trustwor-
thy embedded systems. Journal of Systems and Soft-
ware, 80(5), 643–654.

Y.Oddos, K.Morin-Allory, and D.Borrione (2008).
Assertion-based verification and on-line testing in
Horus. In Proceedings of the IEEE International Desin
and Test Workshop (IDT’08). Monastir (Tunisia).

