
1

This regular paper was presented as part of the main technical program at IEEE ETFA'2011

978-1-4577-0018-7/11/$26.00 ©2011 IEEE

Process Tracking by Equivalent States in Modal Supervisory Control

Gregory Faraut, Laurent Piétrac and Eric Niel
INSA-Lyon, Lab. AMPERE, University of Lyon

20 av. albert Einstein, 69100 Villeurbanne, France
name.lastname@insa-lyon.fr

Abstract

This paper proposes an extension of the process track-
ing in modal supervisory control that takes into account
the models of the controlled processes which are not
trimmed. Indeed, in Supervisory Control Theory (SCT),
when a process is not controllable to respect the speci-
fications, the controlled process is computed by the algo-
rithm of the supremal controllable sublanguage. However,
the final step of the algorithm of the supremal control-
lable sublanguage computes the trim of the model. This
is coherent to remove states that are neither accessible
nor co-accessible because the process is a unique model.
Nevertheless, in the case where the design is done with
many models, like in modal approach, some inaccessi-
ble states in a mode can be accessible from another one.
The proposed framework identifies the accessible states,
called equivalent states, by other models. This identifica-
tion uses the name of states to determine their equivalents
among models of modes. The aim is to improve switching
modes, not only by using languages, but also the name of
states in the automata.

1. Introduction

Initiated by Ramadge and Wonham [7, 8], the Super-
visory Control Theory (SCT) encompasses significatively
the design of Discrete Event systems (DES). Properties
such as controllability, observability, etc., previously re-
served to continuous systems, are now accessible for DES.
Furthermore, the SCT is based on the Language Theory,
this implies that it belongs to formal methods. Then, it is
possible to formally prove that the process under control,
designed by SCT, respects the requirements. Even in the
case where the system is difficult to control, in relation
to many uncontrollable events, the SCT, by the compu-
tation of the supremal controllable sublanguage [10], en-
sures that the controller is the most permissive language
that respects the specification. When the most permissive
language is empty, the worst case, the SCT thus formally
proves no solution exists. So, specifications have to be
modified.

However, the design of real control application implies

very large models, with two main problems. The first con-
cerns the state-space explosion: real system models may
be too large to be computed. The second concerns the in-
terpretation of the models: large models are difficult to
understand even if computation is successful. To solve
the scalability problems, several approaches have been
proposed, mainly in decomposing the model of SCT. If
these approaches are suitable to reduce complexity of the
models, they have to verify more other properties to keep
ensuring the SCT, with these approaches, computes the
most permissive solution which respects the requirement.
These properties are, for example, the property of non-
blocking between supervisors for the modular approach
[11, 4] or the property of consistence for the hierarchical
approach [12, 6].

These approaches reduce the complexity, but do not
improve the understanding. Indeed, they usually handle
the whole process and the whole specification. In our
previous work [2, 3], we propose a framework, based on
modal approach in DES, that is able to take several modes
into account, with one model per mode and smaller mod-
els than in centralized approach, and formally verify the
switching between models are safety. This last property
on switching is verify by the properties of incompatibility
and is computed in the process tracking step. Neverthe-
less, even if the modal approach improves the understand-
ing, the verification to ensure the controller is the most
permissive solution is still difficult. Indeed, all these ap-
proaches decompose the computation whereas the central-
ized approach, the classic one in SCT, computes the solu-
tion through one unique model of process of the system.
In centralized approach, the whole behavior of the system
is represented by the process and all trajectories are gen-
erated. In others approaches, some trajectories, existing in
centralized approach, are removed by the computation of
the supremal controllable sublanguage because they are
inaccessible in the model of the considered mode. But
in other modes, they may exist another compatible state
which is accessible. This has never been taken into ac-
count in approaches using decomposition. In this paper,
we propose an extension of the process tracking step that
is able to detect the admissible switching, regards to re-
quirement, that should been removed by the computation
of the supremal controllable sublanguage. To realize this,

2

we propose to work on automata which are not trimmed.
Then, some inaccessible trajectories are still represented,
and the process tracking step identifies the states that are
equivalent among models. The final aim is to increase the
number of switchings representing in modal approach to
have as much as the centralized approach, in still using
smaller numerous models. In the section II, the basic no-
tions of SCT are recalled. The process tracking is a step
of a global framework; this one is presented in section III.
In section IV, we present the properties newly included in
the process tracking to identify equivalent states. In the
last section, an short example is illustrated.

2. Supervisory Control Theory

The Supervisory Control Theory, proposed by
Ramdage and Wonham and based on Language Theory
[7, 8], separates models in relation to the meaning. The
model of the process, called G, represents the system
without restriction. The behavior represented by this
model may evolve in all possible trajectories, even if these
are dangerous or undesired.

Formally, the automaton G = (Q,Σ,δ ,q0,Qm) models
the uncontrolled process, with Q the finite state set, Σ the
finite alphabet of symbols (event labels), δ : Q×Σ→ Q
the partial transition function, q0 the initial state and Qm ⊆
Q the set of marked states. States exist for periods of time
(duration), whereas events occur instantaneously, asyn-
chronously and at virtually random (unpredictable) times.

Let Σ∗ be the set of all finite sequences, or strings, of
events in Σ, including the empty string ε . The function δ

is extended to δ : Q×Σ∗→ Q. Any subset of Σ∗ is called
a language over Σ. The languages associated to G are the
closed behavior L(G) = {s ∈ Σ∗|δ (q0,s) is defined} and
the marked behavior Lm(G) = {s ∈ Σ∗ | δ (q0,s) ∈ Qm}.
L(G) represents the set of all possible trajectories, i.e. all
possible system behaviors, whereas Lm(G) represents the
subset of trajectories leading to a marked state.

Let us assume that automaton G models the uncon-
trolled behavior of the process. This behavior is not satis-
factory and must be restricted to a subset of L(G) [1]. Let
the requirements designed by the model of specifications
and represented by an automaton E = (X ,Σ,ξ ,x0,Xm)
with X the state set, Σ the same alphabet as in G, x0 the
initial state and Xm the set of marked states. This specifi-
cation models the liveness and safety requirements of the
process. The objective is to adjoin a supervisor, denoted
by S, to interact with G. To do this, the alphabet Σ is parti-
tioned into two disjoint subsets Σc and Σuc which comprise
controllable and uncontrollable events respectively. The
controllable events are the events that can be prevented
from happening by supervisor S, the uncontrollable events
cannot. Formally, the supervisor S is a function from the
language generated by G to the power set (the set of all
subsets) of Σ: S : L(G)→ 2Σ. Finally, our goal is to com-
pute the last model which is represented by the controlled
process, modeled by an automaton H = (Y,Σ,τ,y0,Ym),

such that:

• The marked language of H is included in that of G:
Lm(H)⊆ Lm(G).

• This controlled process satisfies the specification:
Lm(H)⊆ Lm(G×E).

• This controlled process is controllable, i.e. a super-
visor S such that L(S/G) = L(H) exists.

If L(G× E) is controllable with respect to L(G), then
H = G×E. Else, compute the automaton that generate
the largest controllable sublanguage of L(G×E), called
“supremal controllable sublanguage”. If this automaton
exists, the controlled process is non blocking and mini-
mally restrictive.

2.1. Modal Supervisory Control
In this paper, we consider our previous work where the

system is designed by modal approach [2, 3]. Indeed, a
system is composed by numerous components (plants, ac-
tuators, sensors, etc.) and has to respect several require-
ments. Then, the system has to use a part of the set of
components to achieve tasks and has to respect a part of
the set of requirements. This is considered as a ”mode” of
the system, and a system has several modes among which
it may switch. The behavior of a mode represents the tem-
porary behavior of the system until another mode is acti-
vated. The goal of the modal approach is to compute the
controlled process of each mode such that the sequence of
the activation of modes represents the constant behavior
of the system and is equivalent to the behavior computed
by centralized approach.

2.2. Framework of the modal approach
The framework of this approach is illustrated by Fig.1.

The first step formalizes models (models of components,
models of requirements, models of modes, etc.). The sec-
ond step studies, with the SCT, the internal behavior of
each mode, independently of others. The aim is to cer-
tify the requirements in each mode are respected indepen-
dently of the switch requirements of this mode or the re-
quirements of others modes. This step is not further dis-
cussed on this paper. The third step, called intermodal,
studies the behavior that includes the previous internal be-
havior and the switching behavior. The goal of this step is
to ensure the system can switch between modes in keeping
respecting requirements between modes. The computed
models formally respect the requirements. However, the
SCT does not ensure the deactivation of a mode leads to
the activation of another one. This is the aim of the fourth
step, the process tracking. Finally, a merging step is com-
puted at the end of the framework to reduce the size of
models.

In this paper, we mainly focus on the third and fourth
steps. Nevertheless, we need to clearly formalize the mod-
els that are manipulated. The first definition concerns the
components and their models:

3

Figure 1: Framework of modal approach

Definition 1
The set of components is denoted by C = {C1,C2, . . . ,Ci},
where i ∈ N and i ≥ 1. A component Ci is modeled by an
automaton GCi where GCi = (QCi ,ΣCi ,δCi ,qCi

0 ,QCi
m), with:

• QCi , QCi
m and qCi

0 respectively are the set of states,
the set of marked states and the initial state of the
component Ci;

• ΣCi is the event set of the component Ci, including
four subsets:

– ΣCi = Σ
Ci
c ∪ Σ

Ci
uc with Σ

Ci
c ∩ Σ

Ci
uc = /0. Σc and

Σuc are respectively the disjoint sets of control-
lable and uncontrollable events generated by
the component Ci;

– ΣCi = Σ
Ci
� ∪Σ

Ci
� with Σ

Ci
� ∩Σ

Ci
� = /0. Σ

Ci
� is the

set of switch events generated by Ci. Σ
Ci
� are all

other events generated by the components.

• δCi is the transition function and includes δ
Ci
� which

represents the set of switch transitions. A switch tran-
sition is a transition such as a switch event is in-
cluded in Σ

Ci
�. �

The second definition concerns the requirements.

Definition 2
The set of requirements is denoted by
R = {R1,R2, . . . ,Rl}, where l ∈ N and l ≥ 1. A require-

ment Rl , is modeled by a specification ERl represented
by an automaton such as ERl = (XRl ,ΣRl ,ξ Rl ,xRl

0 ,XRl
m),

with:

• XRl , XRl
m and xRl

0 are respectively the set of states,
the set of marked states and the initial state of the
specification ERl ;

• ΣRl is the events set of the specification ERl ;

• ξ Rl is the transition function. �

The next definitions concern the set of modes and the
modes of the system.

Definition 3
The set of modes is denoted by M = {M1,M2, . . . ,Mn},
where n ∈ N and n ≥ 1 (by convention, we assume the
initial active mode is M1). �

Definition 4 (A mode)
Let CM j ⊂C be the set of components used in the mode M j

and letRM j ⊂R be the set of requirements which have to
be respected in the mode M j, then a mode represents the
temporary functioning of the system such that it only uses
for a time a subset of the components and has to respect a
subset of the requirements. Then, a mode M j is defined by
a tuple such that: M j = (CM j ,RM j). �

2.3. The controlled processes
With the previous definitions, the step 3 of the frame-

work, illustrated by Fig.1, computes the models HM j rep-
resenting the controlled process in the mode M j. For-
mally, this computation, based on SCT, is defined as fol-
lows:

Definition 5 (Controlled process HM j)
HM j = (Y M j ,ΣM j ,τM j ,y

M j
0 ,Y

M j
m) with:

Lm(HM j) = [Lm(GM j × EM j)]↑c �

Two operations are recurrent in this computation. The
first one is the parallel composition of automata. This par-
allel composition is defined as follows:

Definition 6 (Parallel composition)
Let G1 and G2 be two automata such that G1 =
(Q1,Σ1,δ1,q0,1,Qm,1) and G2 = (Q2,Σ2,δ2,q0,2,Qm,2),
the automaton G = (Q,Σ,δ ,q0,Qm) is computed by par-
allel composition of G1 and G2 such that:
G = G1||G2 = Ac(Q1×Q2,Σ1 ∪Σ2,δ ,(q0,1,q0,2),Qm,1×
Qm,2) with:

• Q = Q1×Q2 ;
• Σ = Σ1∪Σ2 ;

4

• δ ((x1,x2),σ) =
(δ1(x1,σ),δ2(x2,σ)) i f δ1(x1,σ)! and δ2(x2,σ)!
(δ1(x1,σ),x2) i f δ1(x1,σ)! and σ /∈ Σ2
(x1,δ2(x2,σ)) i f δ2(x2,σ)! and σ /∈ Σ1
unde f ined otherwise

• q0 = (q0,1,q0,2) ;

• Qm = Qm,1×Qm,2 �

The second operator is the algorithm of the supremal
controllable sublanguage, noticed by ↑ c. Two algorithms
exist to compute the supremal controllable sublanguage
[10, 5]. In these two algorithms, the final step computes
the trim of the automaton [1]. For recall, the function
trim removes all states that are neither accessible nor co-
accessible (i.e. states such that marked states are not ac-
cessible from them). The process tracking is operated on
models HM j computed by this second operator.

2.4. Process Tracking
The models HM j respect the internal and switching

specifications. This is ensured by SCT. However, due
to the decomposition on several models - one by mode
- the switch from one mode to another one is not sure.
A mode can be deactivated by the occurrence of switch
event, but not other mode may be activated by the same
occurrence of this event. The aim of the process track-
ing is to ensure that each switch event which deactivates
a mode corresponds to a switch event in another mode
which activates this one. If a switch event deactivates a
mode without activating another one, then a dangerous be-
havior about switching exists and has to be forbidden by
a new requirement. This kind of trajectories, leading to a
switch event which does not activate a mode, are defined
as ”incompatible”. The process tracking is able to charac-
terize trajectories between modes. Another kind of trajec-
tories exists; they concern switch events which may acti-
vate a mode in different states. This is due to the property
of the projection function when the behavior is tracked
between modes. This case means information is missed
about switching and need to be added in the models to en-
sure a suitable switching between modes. These trajecto-
ries are characterized as ”inconsistence”. This characteri-
zation, allowed by the procedure of process tracking, is a
helpful tool for the designer. Then, it only concenters on
the characterized problematic trajectories. To be able to
characterize the trajectories, about compatibility and con-
sistency, the process tracking is based on several defini-
tions. In the next, we consider the system in the mode M j
and the switch event α that may occur to lead the system
in the mode Mk.

The first definition concerns the sets of switch events
in modes

Definition 7 (Switch events sets)
Σ

M j
� ⊂ Σ

M j is the switch events set of the mode M j such

as: Σ
M j
� =

⋃
n∈C

Mj
�

Σ
Cn
� .

Σ
M j
� = Σ

M j
← ∪Σ

M j
→ where Σ

M j
← (resp. Σ

M j
→) is the set of events

which activate (resp. deactivate) the mode M j. They are
defined as follows:

• Σ
M j
→ = {α ∈ Σ

M j
� |Mk ∈ QM,δM(M j,α) =

Mk is defined};

• Σ
M j
← = {α ∈ Σ

Mi
� |Mk ∈ QM,δM(Mk,α) =

M j is defined}; �

From this definition, we are able to define the set of
states where a switch event is generated in modes.

Definition 8 (switch states)
Y

M j

M j
α→Mk

= {y ∈ Y M j | M j,Mk ∈ QM, α ∈ ΣMi→ ∩

ΣMk← , τM j(y,α) is defined} �

The next definition defines the language which leads
from the initial state to the states where a switching is pos-
sible:

Definition 9 (Switch language)
Ly

M j
α→Mk

(HM j) = {s ∈ Σ
M j∗ | y ∈ Y

M j

M j
α→Mk

, τ(y0,s) =

y is defined} �

This language represents all trajectories in the mode
M j which lead to a state ”y” where a switching event may
happen. This language is next projected to determine the
equivalent language in the mode Mk.

Definition 10 (Projection function)
Let PM j ,Mk : Σ

M j∗ → ΣMk∗ such as ∀σ ∈ Σ
M j and ∀s ∈

Σ
M j∗:

PM j ,Mk(ε) = ε

PM j ,Mk(sσ) =

{
PM j ,Mk(s)σ if σ ∈ Σ

M j ∩ΣMk

PM j ,Mk(s) if σ ∈ Σ
M j\ΣMk

In words, this function takes a language defined on al-
phabet Σ

M j , and erases the events that are not included on
alphabet ΣMk .

Definition 11 (Equivalent language)
Let a system be in the mode M j and it switches
into the mode Mk, Ly

M j
α→Mk

(HM j) is the sublan-

guage of HM j leading to the state y where a switch
event α could be generated. Ly

M j
α→Mk

(HMk) is the

language projected on the alphabet ΣMk , such as:
Ly

M j
α→Mk

(HMk) = PM j ,Mk [L
y
M j

α→Mk
(HM j)] �

5

With this equivalent language, we are able to determine
if the trajectory is compatible and/or consistent. A trajec-
tory is compatible if the equivalent language exists in the
mode Mk.

Definition 12 (Compatible language)
A switch trajectory in HMk is compatible with a switch

trajectory in HM j iff: ∀y ∈ Y
M j

M j
α→Mk

, (Ly
M j

α→Mk
(HMk) ⊆

L(HMk)) �

In words, two controlled processes are compatible if all
switching between them are compatible.

A trajectory is consistent if for each switch event in the
mode M j correspond only one switch event in the mode
Mk

Definition 13 (Consistent language)
Let a trajectory be compatible in both modes. Then, It is

consistent iff: ∀y1,y2 ∈ Y
M j

M j
α→Mk

,

(y1 6= y2⇔ Ly1

M j
α→Mk

(HMk)∩Ly2

M j
α→Mk

(HMk) = /0) �

The trajectories which are consistent are compatible.
But compatible trajectories does not imply they are con-
sistent. When compatible but non-consistent trajectories
are detected, the designer has to add new requirements
to remove them. In this paper, the proposition solves in-
compatible trajectories without removing them by new re-
quirement.

3. Procedure and Definitions

We propose in this paper to determine equivalent states
between modes for incompatible trajectories. Indeed, in
our previous work, incompatible trajectories and inconsis-
tent trajectories have to be removed by new requirement.
However, concerning incompatible trajectories, we under-
stand they are incompatible due to the specifications of
modes. A behavior allowed in the mode M j leading to a
switch event is forbidden in the mode Mk by the property
of controllability. Then, the behavior leading to the state
where a switch event happens, in the mode Mk is simply
removed because this state is not accessible in the model
of the controlled process HM j . But the states which are
not accessible in the mode Mk could be accessible by the
mode M j. The incapacity to determine the accessibility
between models of modes is the main difficulty when a
system is designed by decomposition like modal, decen-
tralized or modular approaches. If the state in Mk is not
accessible by language, and thus is incompatible, it could
be equivalent to a state in another mode M j. In order to de-
termine this equivalence, we propose to work on the name
of state, instead of language, and use automata that are
not trimmed. Then, we do not compute the final step of

the algorithms of the supremal controllable sublanguage,
and do not remove inaccessible states.

3.1. Notions of sequence
Previously, we had remark the name of states was

built as a sequence of elements of some sets. To for-
malize equivalent states, we need to formalize the oper-
ations to manipulate the sequences. In particular, how
is it built the name of the state and how to compare
two sequences to establish an equivalence. For that,
we use basic notions of sequence found in [9]. A se-
quence of elements is a list of these elements in some
order. We usually designate a sequence by writing the
list within parentheses. For example, the sequence of
elements from the set {q1,q2,q3} would be written :
(q3,q1,q2,q1). In a set the order does not matter, but in
a sequence it does. Similarly, repetition does matter in
sequence, but it does not in a set. Two sequences may
be concatenate: (q1,q2) · (q3,q4) = (q1,q2,q3,q4). Fur-
thermore, a sequence of sequences results a sequence:
((q1,q2),(q3,q4),(q5)) = (q1,q2,q3,q4,q5). As said in the
previous remark, the product of two set Q1 and Q2, written
Q1×Q2, is the set of all pairs wherein the first element is a
member of Q1 and the second element is a member of Q2:
Q1×Q2 = {(q10,q20),(q11,q20), . . . ,(qi,q j)}with qi ∈Q1
and q j ∈ Q2. The function ”ran” allows to transform a se-
quence into set : ran(q1,q2,q3) = {q1,q2,q3}. At last, but
not least, the function � allows to ”filter” a sequence by a
set to remove from the sequence the element that does not
belong to the set: (q1,q2,q3,q4) � {q2,q4,q5} = (q2,q4)
The result also is a sequence, sub-sequence from the first
one. With these last notions, we are able to compute for-
mally the name of states of all automata in the modal ap-
proach in relation to the several components and the re-
quirements.

3.2. Definition of equivalent states
The studied states are those which are inaccessible in

the mode Mk. This non accessibility is identified by the
trajectories leading to these states as incompatible trajec-
tories. With name of states standpoint, we consider two
states - each one in different mode - are equivalent if the
common components in both modes are in the same state
and if the common requirements are the same. As we con-
sider the name of states is built from the name of each
component and each requirement in mode, in order to es-
tablish the equivalence between two states we only con-
sider common part of the name, those of common compo-
nents and requirements. Formally, we define the equiva-
lence as follows:

Definition 14 (Equivalent states)
Let HM

j and HM
k be the controlled processes resp. of the

mode M j and the mode Mk, Let y1 and y2 be states where
a switch event may occur, let CM jk be the set of compo-
nents which are common between both modes M j and Mk,
and let RM jk be the set of requirements which have to be

6

respected in both modes M j and Mk, the states y1 and y2
are equivalent if:

∀y1 ∈ Y
M j

M j
α→Mk

and y2 ∈ Y Mk

M j
α→Mk

,

CM jk = CM j ∩CMk andRM jk =RM j ∩RMk ,

ran(y1 � (Qeq∪Xeq)) = ran(y2 � (Qeq∪Xeq))

with: Qeq =
⋃

Ci∈C
Mjk QCi and Xeq =

⋃
Rl∈R

Mjk XRl �

3.3. Procedure of process tracking
With all the definitions of the section II, we are able

to propose the procedure of process tracking which char-
acterize switching in using trajectories or also name of
states.

Procedure 1
For each switch event, in HM j , implying an deactivation
of the mode M j, and leading to the activation of the mode
Mk by the occurrence of the switch events:

1. for each y ∈ Y
M j

M j
α→Mk

[def. 8]:

(a) we compute Ly
M j

α→Mk
(HM j) [def. 9];

(b) we compute Ly
M j

α→Mk
(HMk) [def. 11].

(c) the property of compatibility is verified [def.
12]:

i. For each (Ly
M j

α→Mk
(HMk) ⊆ L(HMk)): the

property of consistency is verified [def.
13]:
A. ∃y1,y2 ∈ Y Mk [Ly

M j
α→Mk

(HM j) ⊆

Ly1(HMk) and Ly
M j

α→Mk
(HM j) ⊆

Ly2(HMk)] or
∃y′ ∈ Y

M j

M j
α→Mk

(y 6= y′ ⇔

Ly
M j

α→Mk
(HMk) ∩ Ly′

M j
α→Mk

(HMk) 6= /0):

HMk is not consistent and the proce-
dure stops here;

B. if not, the switch event is then con-
sidered as consistent. We add a sub-
script on the switch event in the tran-
sition function such as τM j(y,α) and
τMk(y′,α) are modified by τM j(y,αl)
and τMk(y′,αl) with l the subscript.
The new alphabet of this step is de-
fined by: Σ

M j
lab = Σ

M j ∪{αl};
ii. For each (Ly

M j
α→Mk

(HMk) 6⊆ L(HMk)): the

equivalent states are verified [def. 14]:
A. For each state where a switch event

is generated in HM j result a set of
equivalent states in HMk . Whatever
the number of element, the designer

has to choose the best candidate to be
the final equivalent state. For all the
identified couples, we add a subscript
as previously.

B. In the case where no equivalent state
could be determined, the procedure
stops here. No solution was found, the
designer has to add requirement.

(d) After the last y ∈Y
M j

M j
α→Mk

, if the procedure does

not stop for inconsistency or incompatibility,
then the models HMk and HM j are compatible
with regard to the switch event α . We can pro-
ceed the procedure for the next switch event.

2. The automata resulted is non-trimmed. All equiva-
lent states were found, we compute the trim now to
removed the useless states, those which are not ac-
cessible from other modes.

(a) ∀y ∈ Y
M j

M j
α→Mk

are considered as initial states;

(b) we compute the trim of the automaton;

(c) we do not consider yet the states y such as
∀y∈Y

M j

M j
α→Mk

as initial states, except for the first

initial state y
M j
0 �

The last step of this procedure manipulates the automa-
ton to compute the trim without removing the accessible
states from another mode. It is the reason why we cannot
apply simply the trim function.

The final models are automata such as properties are
respected, but the models are still possibly inaccessible if
the procedure identify equivalent states. This is the goal of
the final step of the framework, the merge function which
merges all states that are not significant.

4 Example

In this section, an example is presented to illustrate the
automata, representing the behavior of each mode, which
are not trimmed, the trajectories which are not accessible,
and the equivalent states between modes.

4.1 System and requirements
Consider the manufacturing system illustrated in

Fig.2(a), the system comprises four components and one
buffer. The components are used to process a part and the
buffer is used as a storage among the components with a
maximal capacity of 1. The component Ci are modeled
by the automata denoted GCi and are shown Fig.2(b) and
Fig.2(c). The event si and ei represent a new task and the
end of the task, respectively. While all these events are
observable, events Si and r1 are controllable and ei and f1
are not. The system has two modes, such asM= {N,D}
and such as N is the nominal mode and D the degraded

7

mode. In the mode N, the system only uses to produce
the components C1,C2 and C4. However, the component
C1 may fail, represented by the event f1. In this case, the
system switches into the mode D where it uses the com-
ponents C2 and C3. Then, the component C3 replaces the
C1 when this last one fail, and the system does not use the
component C4. The requirement of the activation of the
components C1 and C3, regards to the considered mode of
the system, is illustrated in Fig.2(d). Fig.2(e) represents
the requirement about the maximal capacity of the buffer.

In this example, we only focus on the incompati-
ble trajectories. Then, the requirements illustrated on
Fig.2(f) and Fig.2(g) represent the deactivation of uncom-
mon components between modes. Indeed, if the compo-
nents C3 or C4 are working when a switch event happen,
some trajectories are identified as inconsistent.

4.2 Process Tracking
From these models and SCT, the controlled processes

are computed w.r.t the Def.5. However, in order to study
the inaccessible states which could be accessible from an-
other mode, we do not compute the final step of the al-
gorithm of the supremal controllable sublanguage. Then,
the models of the controlled processes are not trimmed.
Fig.3 illustrates the automata of controlled processes with
Fig.3(a) for HN and Fig.3(b) for HD. The part in dotted-
lines represents the inaccessible states. This part will be
removed with the classic computation of supremal con-
trollable. However, in Fig.3(b), a trajectory leads into the
states (F1,A2,A3,D,B1,C3id) and (F1,M2,A3,D,B1,C3id)
where switch event r1 may happen. Due to the projec-
tion function, this trajectory is incompatible in HN repre-
sented by Fig.3(a). Indeed, the states should be removed
to respect the requirement of buffer because to access to
the state where C1 is in fault state F1, it should be in state
M1 before. Nevertheless, the buffer is already in B1 state,
forbidding the component C1 to work.

The Def.14 is used in order to identify, from the in-
compatible states in HD, the possible compatible states
in HN . Then, we have: (F1,A2,A3,D,B1,C3id) � (QC1 ∪
QC2 ∪ XRbu f ∪ XRmode) = (F1,A2,D,B1) which is equiva-
lent to the state in HN : (F1,A2,A4,D,B1,C4id) � (QC1 ∪
QC2 ∪XRbu f ∪XRmode) = (F1,A2,D,B1).

These two states are equivalents and, even if their tra-
jectories are incompatible, removed by supremal control-
lable, the switching is allowed from these states by the
switch event r1. Then, thanks to equivalent states, we have
identify two more trajectories, illustrated by the dashed
lines in Fig.3(a) to switch between modes than only using
the equivalent language.

5. Conclusion

We discussed about the difficulty, when models are
decomposed in SCT to design the controlled process, to
identify the switching between modes. In particular when
the supremal controllable sublanguage is computed in or-

der to solve a controllability problem. In this paper, we
propose a procedure to identify equivalent states between
modes such that the states in the activated mode are inac-
cessible in the mode but which are accessible for another
mode. In order to realize this, we do not only consider the
language but also the name of states, built by composi-
tion of components used and requirements respected in the
modes. Included in a framework, this procedure allows
increasing the number of switching between modes and
reaching the same behavior in the centralized approach
where the model of the process is not decomposed. Fur-
ther works lead to significant improvement in expression
of requirement by name of states instead of language. In-
deed, some requirements could be difficult to design by
language, and be much easier to design by name of states.
In particular, the requirements may be expressed by some
combination of name of states, which is difficult to express
by language. Furthermore, each extension by the study of
the name of states will need a clear formal definition to
keep the properties of the SCT.

References

[1] C. G. Cassandras and S. Lafortune. Introduction to dis-
crete event systems [Second Edition]. Springer, 2007.

[2] G. Faraut, L. Pietrac, and E. Niel. Identification of in-
compatible states in mode switching. In Emerging Tech-
nologies and Factory Automation, 2008. ETFA 2008. IEEE
International Conference on, pages 121–128, Sept. 2008.

[3] G. Faraut, L. Pietrac, and E. Niel. Formal approach to mul-
timodal control design: Application to mode switching.
Industrial Informatics, IEEE Transactions on, 5(4):443–
453, Nov. 2009.

[4] J. Komenda, J. van Schuppen, B. Gaudin, and H. Marc-
hand. Supervisory control of modular systems with global
specification languages. Automatica, 44(4):1127–1134,
Apr. 2008.

[5] R. Kumar, V. K. Garg, and S. I. Marcus. On controlla-
bility and normality of discrete event dynamical systems.
Systems and Control Letters, 17(3):157–168, 1991.

[6] R. Leduc, M. Lawford, and W. Wonham. Hierarchical
interface-based supervisory control-part ii: parallel case.
Automatic Control, IEEE Transactions on, 50(9):1336–
1348, Sept. 2005.

[7] P. J. Ramadge and W. M. Wonham. Supervisory control
of a class of discrete event processes. SIAM J. Control
Optim., 25(1):206–230, 1987.

[8] P. J. Ramadge and W. M. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77(1):81–98, Jan
1989.

[9] M. Sipser. Introduction to the Theory of Computation, Sec-
ond Edition. Course Technology, February 2005.

[10] W. M. Wonham and P. J. Ramadge. On the supremal con-
trollable sublanguage of a given language. SIAM Journal
of Control and Optimization, 25(3):637–659, 1987.

[11] W. M. Wonham and P. J. Ramadge. Modular supervisory
control of discrete event systems. Mathematics of Control,
Signals and Systems, 1(1):13–30, 1988.

[12] H. Zhong and W. Wonham. On the consistency of hierar-
chical supervision in discrete-event systems. Automatic
Control, IEEE Transactions on, 35(10):1125–1134, Oct
1990.

8

Figure 2: Manufacturing system example : (a) the studied system; (b,c) process of components Ci; (d) model of the specification of
the mode; (e) model of the specification of the buffer; (f) model of the specification about C4; (g) model of the specification about C3

Figure 3: (a) Controlled process HN ;(b) Controlled process HD. The dotted-lines represent the inaccessible states that should be
removed by supremal controllable. The grey states are the compatible states allowing to switch from the degraded mode HD into the
nominal mode HN when a switch event r1 happen. The dashed lines represents these switch events.

