
Control Law Synthesis and Reconfiguration using SCT

Gregory Faraut, Laurent Piétrac and Eric Niel

Abstract— System evolution, such as addition or replacement
of a component, may necessitate complete re-design. Such re-
design may be needed to respect new or updated requirements.
The models then have to be modified. In this paper, we present
a procedure for reconfiguration of a discrete event system
(DES) controller. Based on supervisory control theory (SCT),
the objective of this work is to show how the SCT is convenient
in order to reconfigure the controller to take into account
the new and updated requirements without re-verifying the
requirements that do not change because they are still respected.

I. INTRODUCTION

Faults/failures cause undesired reactions and consequences
as damage to technical parts of plants, to human life or to
the environment and a profound impact also on production
cost and product quality ([1], [2], [3], [4]). In discrete event
system, this often implies a modification of the control law
to take into account the updated behavior occurred by a
failure and to be able to ensure a minimal production and
protection ([5], [6], [7]). However, few of them use formal
approaches to ensure that the requirements are respected.
The supervisory control theory (SCT) guarantees that the
controller respects all specifications ([8], [9]). Some works
based on SCT express conditions to modify a controller
when a reconfiguration is required ([10], [11], [12], [13]).
Furthermore, we proposed in previous works the use of a
modal standpoint to design a system and reduce complexity
of it ([14], [15], [16]). The system is decomposed into
number of modes where each mode represents a part of
the control law. The switch between mode is occurred by
a fault event. Nevertheless, all controllers, one by mode, are
designed at once and do not change after. Until now, if the
system evolves, to take into account a new behavior, this
needs a complete re-design of the controllers.

In this paper, we propose a procedure, based on SCT,
to reconfigure a controller in order to avoid a complete re-
design. The reconfiguration keeps the behavior that does not
change, removes the behavior that is become useless due
to the evolution, and adds the new behavior. Furthermore,
the SCT ensures that the requirements are respected when a
synthesis is done. In consequence, a partial reconfiguration
in using SCT, keeps respecting the requirements that do not
change, and ensures the new requirements are also respected
in the new control law. The next section of this article recalls
some basic notions of SCT and the framework to build the
controlled process. In section III, we present a procedure

The authors are with AMPERE Lab. INSA de Lyon, Univer-
sity of Lyon, 20 av. albert Einstein, 69100 Villeurbanne, France
firstname.lastname@insa-lyon.fr

based on SCT devoted to the reconfiguration of the controller.
The proposed procedure aims to modify the controller by
replacing the outdated requirements by the updated ones and
preserving those which are still needed. The proposition is
illustrated by a conventional example in section IV.

II. OVERVIEW

Initiated by Ramadge and Wonham, the Supervisory Con-
trol Theory has significantly improved results in the discrete-
event systems (DESs) domain. This theory is based on the
separation the numerous models, each one representing a
part of the expected behavior of the system. The model
of process, called G, represents the full behavior that the
system can potentially do. This behavior is uncontrolled. The
model of specification, called E, represents the requirements
that have to be respected by the system. Formally, these
models are designed by automata. The automaton A is a
5−tuple and is defined by : A := (Q,Σ,δ ,q0,Qm) where Q
is a set of the states, Σ is a set of events, δ : Q×Σ∗ → Q
is the transition function, q0 is the initial state and Qm ⊆ Q
the set of marked states. Based on language theory, L(A)
is the language generated by the automaton A written as
L(A) := {s ∈ Σ∗∣δ (q0,s) is de f ined} and Lm(A) the marked
language written as Lm(A) := {s ∈ Σ∗ ∣ δ (q0,s) ∈ Qm}. L(A)
represents the set of all possible trajectories - i.e. all possible
system behaviors, whereas Lm(A) represents the subset of tra-
jectories, leading to a marked state. Furthermore, in SCT, the
set of events Σ is partitioned into two disjoint subsets Σc and
Σuc which comprise controllable and uncontrollable events
respectively. From the language generated by the process,
L(G), and the language generated by the specification, L(E),
a supervisor called S is adjoined to restrict the behavior of
G in a feedback manner in regard to the behavior expressed
by E. Nevertheless, the supervisor S can only forbid the
controllable events included in Σc. Formally, S is a function
defined by S : L(G)→ 2Σ. If the supervisor S exists, i.e. there
exists a supervisor able to sufficiently forbid controllable
events to obtain the admissible behavior. Consequently, there
exists a model H representing the controlled process. H
is a sub-behavior of G as it respects the requirements
imposed by E. In this case, H is controllable according to G.
Formally, H := G×E. In the opposite, if H is initially not
controllable according to G, due to uncontrollable events in
Σuc, the controlled process H will be the most permissive
sub-language that respects the requirements and that is
controllable according to G. Further discussion has been
made in [17] and [18]. As yet, H := [G× E]↑c where ↑c
is the function that computes the supremal controllable sub-
language. To resume, in order to build the controlled process



H, the designer uses the framework illustrated in ”Fig. 1”.
The green book represents the text requirements.

Fig. 1. Framework of the SCT.

Each component Ci in a system is modeled by an au-
tomaton GCi , and all components are included in the set of
components C. The global process G is built by parallel com-
position of all components. Each model E l represents one
requirement. All requirements are synchronized by parallel
composition in one model E, this latter represents the global
model of specification. From G and E, the controlled process
H is then performed.

Different functions exist to manipulate an automaton,
and its generated language. One of them is the projection
function. This function is performed on strings or languages
from a set of events, Σi, to a smaller set of events, Σ j, where
Σ j ⊂ Σi. Formally, the projection is defined as follows:

Definition 1
Let P : Σ∗i → Σ∗j such as ∀σ ∈ Σi and ∀s ∈ Σ∗i :

P(ε) = ε

P(sσ) =

{
P(s)σ if σ ∈ Σ j
P(s) if σ ∈ Σi∖Σ j

In words, this function takes a language defined over the
alphabet Σi and erases the events that are not included on
the alphabet Σ j. More properties of the projection function
are shown in [19].

III. PROPOSITION

In this paper, a procedure is presented to reconfigure
the control law, represented by the controlled process H,
when a part of the system and its requirement change.
Usually, depending on the design, a little change may occur
a complete new design to obtain the new control law, in
particular to ensure the requirements that had not been
modified are still respected and the updated requirements
are well formalized. The proposed procedure uses SCT. The
procedure decomposes in five steps as illustrated ”Fig. 2”.

Procedure 1
∙ Identify the part of the system that does not change,
∙ Remove the others part of the control law by the

projection function,
∙ Reduce the model by language-equivalent,

∙ Extend the model with the updated behavior of the
system

∙ Synthesize the new control law to respect the new or
updated requirements. ♦

Fig. 2. Proposed procedure to reconfigure control law

From a current control law represented by the controlled
process H, the designer identifies the components that pre-
serve their original behavior in the new system, and the
components that have to be updated or the new components.

In the first step, the designer has to select components
that have the same behavior in the new system and remove
the others. In the alphabet Σ, Στ represents the alphabet
of events that are generated by the outdated components.
Furthermore, the outdated components have to share no
events with components which the designer has selected.

The second step removes the behavior generated by the
events included in the alphabet Στ by using the projection
function. Formally, if H is the controlled process that the
designer wants to re-use for a part, the step 2 is performed
as follows:
Definition 2

P : Σ
∗→ (Σ∖Στ)

∗

P[L(H)] = {σ ∈ (Σ∖Στ)
∗ : (∃s ∈ L(H))[P(s) = σ ]}

All events over the alphabet Στ are replaced by an empty
string ε . However, the behavior generated by the events
included in the alphabet Σ∖Στ is still there and this behavior
keeps respecting the requirements on the system.

Due to the projection function and the empty string ε ,
the projected language P[L(H)] generated by the automaton
Hpro j may become non-determinist and/or non minimal. In
order to reduce the size of the model and transform the non-
deterministic automaton into deterministic automaton, the
third step performs a language-equivalence reducing. This
transformation erases the empty-string of the projected lan-
guage and checks the minimal number of states to generate
the language. More explanation can be found in [9] and [19].



The reduced and determinist automaton, called Hred only
represents the behavior of the components that preserve the
original behavior, including the specifications between these
components.

In the fourth step, and from the reduced controlled process
Hred , the designer extends it with the behavior of the updated
or new components. Formally, if the automaton representing
the updated behavior is called Gupdated , the extended process
Gext is defined as:

Gext = Hred ∣∣Gupdated

Finally, in the last step, the designer performs the syn-
thesis as usual in SCT. From the new process Gext and
the updated or new models of specifications Eupdated , the
updated controlled process Hupdates is built. Furthermore, in
the case where the model is not controllable, the supremal
controllable is performed. Formally, the controlled process
is defined by:

Hupdated = [Gupdated×Eupdated ]
↑c

At the end, the new controlled process Hupdated represents
a model where a control law of the system can be extracted
and in which the updated and new components and behaviors
are taken into account. The outdated behaviors were removed
by the projection function and the language equivalence.
Furthermore, thanks to projection function, the behaviors
wich the designer wants to keep are not removed and the
specifications about these components are still respected.
This point is important to reduce the calculability. The
designer has only to focus on the new or updated components
and their associated specifications.

IV. EXAMPLE

In this section, an example is presented to illustrate an
evolved system, and the modification of its control law.

A. System before reconfiguration

The manufacturing system illustrated in ”Fig.3.(a)” the
system comprises three components and one buffer. The
components are used to process a part and the buffer is
used as a storage between the components with a maximal
capacity of 1. The components Ci are modeled by the
automaton denoted GCi and are shown ”Fig.3.(b)” for the
component C1 and ”Fig. 3.(c)” for the components C2 and
C3. The events si and ei represent a new task and the end of
the task respectively. Whilst all these events are observable,
events si and r1 are controllable whereas ei and f1 are not.

The system has two functioning modes. The first one is
a nominal mode where only the components C1 and C2 are
used. However, the component 1 may fail. It is the degraded
mode. In this mode, the component C1 is replaced by the
component C3. This malfunction is modeled with the event
f1 while the repairing is modeled with the event r1. This
change is modeled by the automaton shown ”Fig. 3.(e)”.

Formally, the global process G is defined by:

G = GC1 ∣∣GC2 ∣∣GC3

and the model of the global specification E is defined by:

E = Ebu f ∣∣EC1→C3

The controlled process H is defined by:

H = [G×E]↑c

The controlled process H is illustrated by the figure 6
without dotted and dashed lines. The name of states has been
changed to reduced the size of the model.

B. Reconfiguration of the system

A system may change for various reasons. In the proposed
system, the designer wants to modify the control law to
include the next requirements:
∙ The component C2 may now fail;
∙ The component C2 will be replaced by a new component

C4 if a malfunction happens.
The evolved system is now illustrated in ”Fig. 4.(a)”.

The updated behavior of the component C2 is modeled by
GC2,updated and is illustrated in ”Fig. 4.(b)”. The component C4
is shown ”Fig. 4.(c)”. The updated requirement is modeled
in ”Fig. 4.(d)” for the buffer and the new requirement is
modeled in ”Fig. 4.(e)” for the activation of the component
C4 when a malfunction happens in the component C2.

1) Identification of useless behavior: In the first step, the
designer has to build the set of events Στ that includes all
the events generated by the component where the behavior
has to be updated. In the example, Στ = {s2,e2}.

Due to SCT, that uses the language theory and automata
for modeling, it is not possible to extend automatically the
behavior of the component C2 with the fault event f2 and
the repair event r2. The reason is the admissible behavior
of the controlled process H already takes into account some
requirements about the current behavior of the component
C2. Furthermore, extending it manually no more ensures that
the controlled process keeps respecting requirement. It is for
this reason the mathematical functions are taken to modify
the control law.

2) Projection function: The projection is used as written
in the definition 2. The automaton used in the projection is
the controlled process H. The projected automaton, called
Hpro j, is illustrated in ”Fig.5.(a)”.

3) Language Equivalence: In order to reduce the model
size, and potentially to transform the previous automaton
into a determinist automaton, the language equivalence is
performed. The result is shown in ”Fig.5.(b)”.

4) Extension of process: From the reduced controlled
process and the models of updated and new components, the
designer builds the updated process. Technically, the process
Gupdated is defined by:

Gupdated = GC2,updated ∣∣GC4

and
Gext = Hred ∣∣Gupdated

The extended process now includes the previous behavior
generated by the components C1 and C3, and respects the



Fig. 3. Manufacturing system example : (a) the studied system; (b,c) process of components Ci; (d) model of the specification of the buffer; (e) model
of the specification of the replacement when a malfunction in the component C1 happens.

Fig. 4. Manufacturing system example : (a) the evolved system; (b) the updated behavior of the component GC2,updated ; (c) process of the new component
GC4 ; (d) model of the specification of the buffer; (e) model of the specification of the replacement when a malfunction in the component C2 happens.

Fig. 5. Manufacturing system example : (a) Hpro j : the controlled process after the use of the projection function; (b) Hred : the projected controlled
process after a reduction by language equivalence.



requirement between them. Furthermore, it also includes
the updated or new behaviors generated by the components
C2,new and C4

5) Synthesis of the new controlled process: In the same
way that the usual framework in SCT, the updated controlled
process is performed by synthesis. In the case where the con-
trolled process is not controllable in regards to the process,
the supremal controllable sublanguage is computed. The
figure 6 illustrates the updated controlled process Hupdated .
The complete behavior is obviously larger than the controlled
process H (without dotted and dashed lines) and it will be
difficult to extend it manually.

V. CONCLUSIONS AND FUTURE WORKS
In this paper, we have proposed a procedure in order

to reconfigure the control law only with the updated or
new behaviors and their associated requirements. Thanks to
SCT, the complete redesign has been avoided and the initial
requirements that do not change are ensured to be respected,
even after the reconfiguration and without re-verifying them.
Then, the SCT is convenient to reconfigure automatically
the controller of a system. The future works may focus
on two parts; the first one is identifying the conditions to
have Hupdated optimal. Indeed, with SCT, avoid a complete
redesign implies the final model is not optimal. The second
is about the state space explosion that is one of the problems
in SCT to design huge systems. In particular, the procedure
proposed in this paper is adapted to be used with a modal
standpoint. The goal is to build a new mode wherein the
system will be when a malfunction happens. The modal
approach reduces the complexity in decomposing the model
of the system into number of smaller models, one by mode.
Each model of mode respects its own requirements. The
requirements may then opposite between modes. Further-
more, adding a new mode to design a reconfiguration is
a convenient approach to reduce complexity, design huge
system and to modify only a small part of the system.

REFERENCES

[1] K. K. N. Fourlas, G.K.; Kyriakopoulos, “Fault diagnosis of hybrid
systems,” Intelligent Control, 2005. Proceedings of the 2005 IEEE
International Symposium on, Mediterrean Conference on Control and
Automation 2005, vol. ,, pp. 832–837, 2005.

[2] P. E. Miyagi and L. A. M. Riascos, “Modeling and analysis of fault-
tolerant systems for machining operations based on petri nets,” Control
Engineering Practice, vol. 14, pp. 397–408, 2006.

[3] S. Pleisch and A. Schiper, “Approaches to fault-tolerant and transac-
tional mobile agent execution—an algorithmic view,” ACM Comput.
Surv., vol. 36, no. 3, pp. 219–262, 2004.

[4] Z. Yang and D. Hicks, “Synthesis of robust restruc-
turable/reconfigurable control,” in Control, Automation, Robotics
and Vision, 2006. ICARCV ’06. 9th International Conference on, 5-8
2006, pp. 1 –6.

[5] S. Chenhuan Wang; Zad, “Fault recovery in discrete-event systems
using observer-based supervisors,” in INDICON, 2005 Annual IEEE,
2005, pp. 442 – 445.

[6] M. F. Kristin Andersson, Bengt Lennartson, “Synthesis of restart states
for manufacturing cell controllers,” in Dependable Control of Discrete
Systems, 2009.

[7] E. Niel, B. Brandin, S. Boukhobza, and M. Nourelfath, “Operational-
safety supervisory control: an approach to supervisor activation,” in
Emerging Technologies and Factory Automation, 1995. ETFA ’95,
Proceedings., 1995 INRIA/IEEE Symposium on, vol. 2, Oct 1995, pp.
553–561 vol.2.

[8] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, Jan
1989.

[9] W. M. Wonham, “Supervisor control of discrete-event systems ece
1636f/1637s 2009-10,” 2009, course notes, departement of Electrical
and Computer Engineering, Univeristy of Toronto. [Online]. Available:
www.control.toronto.edu/people/profs/wonham/

[10] S. F. L. Yi-Liang Chen, Laortune, “How to reuse supervisors when
discrete event system models evolve,” vol. 3, Dec 1997, pp. 2964 –
2969 vol.3.

[11] H. Jing Liu, Darabi, “Control reconfiguration of discrete event systems
controllers with partial observation,” Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, vol. 34, no. 6, pp. 2262
–2272, Dec. 2004.

[12] R. Sampath, H. Darabi, U. Buy, and L. Jing, “Control reconfigura-
tion of discrete event systems with dynamic control specifications,”
Automation Science and Engineering, IEEE Transactions on, vol. 5,
no. 1, pp. 84 –100, Jan. 2008.

[13] S. E. V. A. d. P. M. Silva, D.B., “Application of the supervisory control
theory to automated systems of multi-product manufacturing,” Sept.
2007, pp. 689 –696.

[14] O. Kamach, L. Pietrac, and E. Niel, “Design of switching supervi-
sors for reactive class discrete event systems,” Information Control
Problems in Manufacturing 2006, vol. 12, no. 1, pp. 289–294, 2006.

[15] G. Faraut, L. Piétrac, and E. Niel, “A new framework for mode
switching in sct,” in European Control Conference 2009 - ECC09,
August 2009.

[16] G. Faraut, L. Pietrac, and E. Niel, “Formal approach to multimodal
control design: Application to mode switching,” Industrial Informatics,
IEEE Transactions on, vol. 5, no. 4, pp. 443–453, Nov. 2009.

[17] W. M. Wonham and P. J. Ramadge, “On the supremal controllable
sublanguage of a given language,” SIAM Journal of Control and
Optimization, vol. 25, no. 3, pp. 637–659, 1987.

[18] R. Kumar, V. K. Garg, and S. I. Marcus, “On controllability and
normality of discrete event dynamical systems,” Systems and Control
Letters, vol. 17, no. 3, pp. 157–168, 1991. [Online]. Available:
http://home.eng.iastate.edu/ rkumar/

[19] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems [Second Edition], C. G. Cassandras and S. Lafortune, Eds.
Springer, 2007.



Fig. 6. Controlled process H : figure without dotted-lines; Updated controlled process Hupdated : complete figure. The dotted and dashed lines represent
the part of behavior that has been added by the updated or new behaviors and specifications. Precisely, the dashed-lines represent the event f2 and where
the updated behavior starts.


