
A new framework for mode switching in SCT

Gregory FARAUT, Laurent PIÉTRAC, Eric NIEL

Laboratoire Ampère, INSA-Lyon
Bât. St-Exupery, 20 av Albert Einstein

69621 Villeurbanne, France
First.Lastname@insa-lyon.fr

Abstract— An usual way in industry to design discrete events
system (DES) consists of using a multi-modal approach to
decompose the complexity of processes and specifications. The
supervisory control theory (SCT) allows to prove that the pro-
cess can be controllable to fulfill the requirements. Nevertheless,
even based on a simple specification about commutations, it is
very difficult to prove that the connections among modes are
correct and reliable. This paper presents a framework allowing
to design a system and detect specification incompatibilities by
using the Supervisory Control Theory. The presented frame-
work detects the specifications to change or to control them to
promote correct mode switching.

I. INTRODUCTION

Initiated by Ramadge and Wonham, the Supervisory Con-
trol Theory (SCT) has allowed to introduce some important
properties such safety, liveness, controllability, observability
and more recently diagnosability in Discrete Events System
(DES) area. Supported by Finite State Machine (FSM), SCT
has a problem of scalability and interpretation of models
when is applied to industrial applications. Several approaches
have been proposed to solve scalability: statecharts [1],
modecharts [2], hierarchical finite state machines and mode
automata [3], [4]. However, these approaches handle always
the whole process and the whole specification, involving a
difficult interpretation of models, in particular about commu-
tation between system’s modes that are not clearly identified
and defined.

In DES, numerous works are focused on multi-modal
control law. However, most of them applied compositional
formalisms on modeling configurations : for instance state
charts [1], mode charts [2], hierarchical finite state machines
and mode automata [3]. In these approaches, the model of
the process is not specifically representative of the state
of the process, and thus, is unable to detect automatically
(using the synthesis or validation) the issues about mode
switching. Formal approaches like SCT [5] seems to be more
convenient for mode management by distinguishing process
and specifications.

Nevertheless, Few approaches using SCT with modal point
of view exist [6], [7]. These works allow to study the
intramodal behavior of each mode independently and identify
the incompatible states when a commutation could happen.
However these works depend on particular specifications
required by the system. This leads to a lack of possible
commutations.

Based on these previous works, this paper presents a new
framework taking all possible commutations into account,
whatever the specifications. This framework thus ensures a
complete reachability, the major property concerning com-
mutation phenomena, between system’s modes.

This article is decomposed as following. Section 2 in-
troduces Supervisory Control Theory (SCT), on which this
work is formally based. We explicitly define the SCT ap-
proach. Section 3 explains, throughout the article, the new
framework to obtain the final command law of a system. We
conclude on actual works and some perspectives.

II. SUPERVISORY CONTROL THEORY

Ramadge and Wonham’s theory [5] underpins the study
of Discrete Event System control. This theory is based on
separation between the model representing what the system
can do (the process), the model of what the system must
or must not do (the liveness and safety properties of the
process), the model of what the system does (the controlled
process) and the model of what the system should do (the
desired language).

The process [8] G is a generator G = (Q,Σ, δ, q0, Qm)
where Q is the finite state set, Σ the finite alphabet of
symbols (event labels), δ : Q×Σ→ Q is the partial transition
function, q0 is the initial state and Qm ⊆ Q is the set of
marked states. States exist for periods of time (duration),
whereas events occur instantaneously, asynchronously and
at virtually random (unpredictable) times. For a machine,
examples of states are ”idle”, ”operating”, ”broken down”,
”under repair”. Examples of events are ”machine starts to
work”, ”breaks down”, ”completes work” or ”start to repair”.

For the alphabet Σ, we have the partition Σ = Σc ∪ Σuc

where the disjoint subsets Σc and Σuc comprise controllable
and uncontrollable events respectively. We can also have the
partition Σ = Σo∪Σuo where the disjoint subsets Σo and Σuo

comprise observable and unobservable events respectively.
No particular relation is assumed to exist between Σc and Σo:
in particular, an event can be controllable but unobservable.

The languages associated with G are the closed behaviour
L(G) = {s ∈ Σ∗|δ(q0, s)!} and the marked behaviour
Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm}. L(G) represents
the set of all possible trajectories, i.e. all possible system
behaviours, whereas Lm(G) represents the subset of trajec-
tories leading to a marked state. These states allow us to

model ends of tasks, states to be reached or states in which
the system can be stopped.

For a process G, there are two types of conventional
problems. In the first one, we have a process G and a
specification E that is modelled by an automaton E =
(X,Σ, ξ, x0, Xm) where X is the finite state set, Σ the same
alphabet of symbols as in G, ξ : X × Σ → X the partial
transition function, x0 the initial state and Xm ⊆ X the
subset of marked states. The designer checks the existence
of the product composition [9] of ‘G’ and ‘E’, meaning a
subset of system behaviour complying with the specification.
This behaviour also represents the restriction on the process
behaviour through action of a supervisor ‘S’. If the language
generated by G × E can be controlled with respect to
‘G’, it then represents the obtained behaviour through the
action of ‘S’ on ‘G’ (S/G). If the generated language
cannot be controlled, we determine the largest controllable
sublanguage, called ”supremal controllable sublanguage”. In
the second problem, the designer has the process G and
already knows the expected behaviour for the controlled
process (specified by a language K). He then checks whether
there is supervisor that can limit the process G behaviour,
such as L(S/G) = K. If this supervisor exists, the language
K is the language of the controlled process S/G. If the
supervisor does not exists, we proceed to obtain the largest
sublanguage of K using the supremal controllable in the
same way as in the direct approach.

III. MODE SWITCHING

A. General framework applied to simple case

A system can be operated in different and numerous
modes. In mode switching terms, our contribution proposes
a framework, in which:
• Each mode is studied independently and separately. In

most cases, a mode is characterized by the components
used and by the components necessary to enter or exit
of it;

• The (intramodal) specifications to be satisfied by the
system in this mode are studied on models built in-
dependently of others specifications. SCT theory is
applied “normally” in each mode (we limit ourselves
to a centralized case);

• The (intermodal) framework, including the (intermodal)
specifications used to extend the behaviour of modes
and have all possible trajectory, and the (switch) speci-
fications used to limit the commutation phenomena, i.e.
forbid the trajectories to switch that are not desired. Of
course, this will depend if switch events can be observed
and controlled or not.

The main problem is to determine the state of the model
(process, controlled process and specification), when we
leave a mode (the ”initial mode”) to enter another mode (the
”final mode”).

In this paper, as example and for a better understanding,
we apply directly our framework on a simple system, repre-
sented ”Fig. 2(a)”, used for different tasks. The system has

two behaviours depending on a machine failure, and in this
case, the system performs another task.

The following sections describe successively the in-
tramodal framework for each mode and the intermodal
design process applied on the given example.

B. Definitions

Our system, shown ”Fig. 2(a)”, is composed by two
different machines and by one buffer. The machine 1 can
break down due to malfunctioning and this fact is modelled
using the event f1. Repair is modelling using the event
r1. These switch events involve a switch for the system
from nominal to degraded mode.The machine 2 works both
nominal and degraded modes, but its dynamic is different.
In the nominal mode, it takes pieces in buffer, while in
the degraded mode it takes pieces somewhere else. In this
system, the buffer has a capacity of one and is considered
as specification.

Definition 1: A component is modelled by an automaton
GCi where GCi = (QCi ,ΣCi , δCi , qCi

0 , Q
Ci
m), with:

• QCi is the state set of component i;
• ΣCi is the event set of component i, including three

partitions:
– ΣCi = ΣCi

c ∪ ΣCi
uc with ΣCi

c ∩ ΣCi
uc = φ;

– ΣCi = ΣCi
o ∪ ΣCi

uo with ΣCi
o ∩ ΣCi

uo = φ;
– ΣCi

� ⊂ ΣCi is the set of switch events;

• δCi is the transition function and includes δCi

� which
represents the set of switch transitions;

• qCi
0 is the initial state of component i;

• QCi
m is the marked states set of component i;

Definition 2: The list of operating modes is denoted by
M = {M1,M2, . . . ,Mn}, where n ∈ N and n ≥ 1 (by
convention, we assume the initial active mode is M1). C is
the list of components and CMj the list of components used
in the mode Mj , where CMj = CMj�∪CMj←∪CMj→ such
that:
• CMj� is the list of components representing the in-

tramodal behavior of mode Mj ;
• CMj← is the list of components that can enter into the

mode Mj ;
• CMj→ is the list of components that can exit from mode
Mj ;

• CMj� = CMj← ∪ CMj→ is the list of switch compo-
nents;

No particular relation is assumed to exist between
CMj�, CMj← and CMj→ except they are all included in C:
in particular, a component can be included in :
• CMj�, but not be a switch component of CMj�.
• CMj� and in CMj←. It means this component is used

in the mode and is necessary to enter into this mode,
• CMj← or CMj→. It means this component is only

necessary to switch (enter or exit).
ΣMj

� ⊂ ΣMj is the set of commutation events of mode Mj :
ΣMj

� =
⋃

i∈CMj ΣCi

�.

In the given example, we have two modes (M = {N,D}).
The nominal modes represent the usual work where machine
1, illustrated ”Fig. 2(b)”, produces a piece that is loaded in
the buffer, then is taken by machine 2, shown ”Fig. 2(c)”. In
the case where the machine 1 breaks down, the machine 2
works alone. For the mode N , CN = {GC1 , GC2}, CN� =
{GC1 , GC2}, and CN� = {GC1}. For the mode D, CD =
{GC1 , GC2}, CD� = {GC2}, and CD� = {GC1}.

Definition 3: Let a mode automaton representing the
switch behaviour of the system, that represents also the de-
sired switch behaviour of the designer. Formally, this automa-
ton is denoted by GMa = (QMa,ΣMa, δMa, qMa

0 , QMa
m)

such that:
• QMa =M;
• ΣMa =

⋃
a∈M ΣMa

� ;
• qMa

0 =M1;
This automaton serve us to easily add information in which

mode the system is. It also allows us to add strategies to
switch in modifying it. In the example, the mode automaton
GMa is shown ”Fig. 2(d)”.

C. Intramodal design

For each mode Mj , the process GMj� resulting from
parallel composition [9] of automata GCi of components
used in this mode and is defined on ΣMj� =

⋃
i∈CMj� ΣCi .

For each mode Mj , the specification E
Mj�
k (problem 1)

or the desired language KMj� (problem 2) are defined
on the alphabet ΣMj�. The overall specification EMj�

is the product composition of automata of specifications
to be complied with in this mode. After designing the
‘n’ modes required, the designer obtains ‘n’ uncontrolled
processes GMj�, ‘n’ specifications EMj� and ‘n’ controlled
processes SMj�/GMj� (called from now G

Mj�
sup). It remains

to consider the switching modes.
The intramodal design is very similar to the process of

supervisory control theory used to synthesize the command
law. In the intramodal case, we limit us to intramodal
behaviour of each mode to build GMj�

sup .
In the nominal mode of the example, the models must

be controllable to respect the specification defined by EN�,
shown ”Fig. 2(f)”, and that represents the capacity of the
buffer and the work that machine 2 must do, i.e. the task
represented by s22 is forbidden and only the task launched
by s21 is allowed. As the system is uncontrollable, we have to
build the supremal controllable sublanguage, illustrated ”Fig.
2(g)”. By the same way, we build the degraded mode GD�

sup ,
shown ”Fig. 2(i)”, which respects the specification defined
by ED�, shown ”Fig. 2(h)” At this step, we have completely
built the intramodal behavior of modes and we are sure the
behaviour of each mode respects expected properties.

D. Intermodal design

In this section, we focus on the intermodal behavior of
modes, and take into account the behaviour that could lead
to switch between modes. The framework we use is shown
in fig.1.

Fig. 1. Intermodal design framework

This framework includes different steps allow us to iden-
tify all trajectories connecting modes, and to be able to
forbid some of them. The first step is the extension of the
mode’s dynamics. The second one is the synthesis of these
extended mode’s behaviours by the extended intramodal
specifications regarding these new dynamics and by the
intermodal specifications. The aim of the next steps is to
avoid the non-determinism (step three “process tracking”)
that involve the reduction complexity of models of mode
(step five “merge function”). Between the last two steps,
we can use the synthesis (step four) again, to forbid the
undesired trajectories. The final models resulting of the fifth
step are the command law for mode.

1) Extension of process: While the intramodal frame-
work, we focus on the intramodal behaviour of each mode.
Nevertheless, to be able to identify all trajectories relying
modes, we have to overload the mode’s dynamic with some
components’ dynamic. Indeed, the intramodal framework
does not take the switch dynamics into account. To obtain
the extended models GMj

ext, we use parallel composition of
both included components GCi in CMj (and not only CMj�),
and the mode automaton GMa shown ”Fig. 2(d)”.

Definition 4: Let GMj

ext be such that :
G

Mj

ext = (QMj

ext,Σ
Mj

ext, δ
Mj

ext , q
Mj

ext,0, Q
Mj

ext,m),
where : GMj

ext = GMa||A∈CMjA
This extension ensures that the whole dynamic is able

to detect the trajectories relying modes and it allows us to
switch. The extended model GN

ext applied for the nominal
mode is shown ”Fig. 3(a)”.

2) Extended intramodal and intermodal specifications:
The synthesis of the intramodal framework only deals with
built specifications regarding taken components in the in-
tramodal behaviour of modes. In this step, we have to take
into account specifications more that intramodal framework
to respect the intermodal behaviour of each mode. For that,
the specifications are of two types.
• Extended intramodal specifications. We have to ex-

tend these specifications regarding the news added
components in the extension step. Indeed, extend the
intramodal behaviour of modes involve to extend the
intramodal specification to keep respecting the global
behaviour. The extended intramodal specifications is

shown ”3(b1)” for nominal specification.
• Intermodal specifications represent specification which

are not necessary in the intramodal behaviour, but can
modify the trajectory to switch. we then have to take in
consideration these specifications. The intermodal spec-
ifications is shown ”3(b2)” for nominal specification.

The product composition of these both specifications results
the extended intermodal specification EMj

ext . The synthesis is
applied by the same way than the synthesis in intramodal
framework. For each mode, we obtain the model GMj

ext,sup

which integrally has both intramodal and intermodal dynam-
ics. ”3(c)” represents the model of the supremal controllable
sublanguage for the nominal mode (GN

ext,sup)
3) Process tracking: The correlation between modes

is represented by switch events generated by components
(shared or not). We have indeed to identify which switch
events will exit of the initial mode to go into the final mode.
The dynamic behaviour of the initial mode stops when the
dynamic behaviour of the final mode begins. To identify
these connections between modes, we take all traces leading
to a switch event in the language of the initial mode and
project them onto the final mode. In other words, we let
KMj

(GMj → GMk), the desired language which generates
switch events in mode Mj leading to the mode Mk and
including all traces leading to an occurrence switch event.
The words in KMj (GMj → GMk) may not have any switch
events but would lead to a state where a switch event could
happen. To follow these traces from the initial mode and
detect them in the final mode to identify the equivalent states
where a switch event could happen, we use the extended
projection function introduced by authors of [6].

Formally, the extended projection function Pj,k is defined
as follows:

Definition 5: Let Pj,k : Σ∗j → Σ∗k such as ∀σ ∈ Σj and
∀s ∈ Σ∗j :

Pj,k(ε) = ε

Pj,k(sσ) =
{
Pj,k(s)σ if σ ∈ Σj ∩ Σk

Pj,k(s) if σ ∈ Σj\Σk

In words, this extended projection function definition
limits neither alphabet Σj nor Σk and in the case in which
Σk ⊆ Σj , this function is equivalent to the projection used
in SCT [9]. This function erases effectively from a string s
those events σ that are not included in the set of common
events Σj ∩Σk. This allows us to obtain only the equivalent
trace in the new mode.

In the following procedure, we apply the above defini-
tions to track trajectories representing commutations on the
given example: To recall, we have two modes N and D,
where GN

ext and GD
ext are the parallel composition of both

components GC1 and GC2 , and the mode automaton GMa.
The model of the nominal mode GN

ext is controlled by the
extended specification EN

ext while the degraded mode GD
ext

is controlled by the extended specification ED
ext. We now

have two modes represented by the model GN
ext,sup for the

nominal mode, and by the model GD
ext,sup for the degraded

mode. The initial (nominal) mode is GN
ext,sup, and the final

(degraded) mode is GD
ext,sup. The switch events f1 and r1

are generated by the component GC1 .
Procedure 1: The event f1 causes the switch from initial

to final mode, while the event r1 causes the switch from
final to initial mode. Thus, f1 ∈ (ΣN

→and ΣD
←), and r1 ∈

(ΣN
←and ΣD

→).
1) We begin by choosing two modes where we calculate

all trajectories, we then obviously choose the only two
modes of the example.

a) We calculate the language KN (GN → GD) that
represents all traces leading to a state qN where
an occurrence of switch event f1 could happen
in GN .

b) We project KN (GN → GD) onto L(GD) to
obtain KD(GN → GD). These traces lead us
to states qD where δ(qD, f1) exists.

c) At this step, there are two possible cases for each
trace:
i) The switch event (identified by one trace)

exists in the initial mode and final mode. In
this case, we just have to rename this switch
event by adding specific sub-indices;

ii) The switch event exists in the initial mode, but
not in the final mode. This case means one
trace, which deactivates the existing initial
mode, but there is none in the final mode
to activate it. That kind of trace, identified
by a switch event, generates an error if we
implement the model without controlling this
trace.

2) With the same method, we repeat this operation to
calculate all traces leading from degraded mode GD

to nominal mode GN . These commutations represent
the repair event of machine 1.�

The second case of step ‘c’ is really important for us,
because this kind of switch gives us the information on
bad trajectories while mode switching. It means that, in the
case where at least one trace of this type exists, our system
can be broken and unable to keep running; this is, in total
contradiction with the expectations and requirements. Thus,
we have to forbid all traces that are leading us to one of these
incompatible states in “intermodal” specifications (treated in
the next section III-D.4).
The labeled model GN

lab representing the nominal mode is
shown ”Fig. 4(a)”.

4) Switch specifications: The switch specifications step
is about some trajectories we had detected as undesired
during the process tracking, or because we do not want to
authorize some dynamic to switch. It is the last step where
we forbid some dynamics, and we see that a controllable
process exists. Building these models of specifications is
really easy, because we use the new switch events label
as we did in the last step (III-D.3). In others word, the
language of switch specification is defined by the alphabet
ΣMj

lab without the switch events we have to forbid. Applying
these specifications gives us the models GMj

sup that we reduce

in the next step in merging some states. At the end of
this step, the model are controlled, no model of the modes
has more than one switch event with the same label, the
undesired switch events have been forbidden, and for each
switch event, there is only one other switch event in another
mode that has the same label. Now, we can reduce the model
of the modes by using a merge function.

5) Merge function: The merge function reduce the
complexity of the model in keeping only the intramodal
behaviour of each mode and including the useful intermodal
behaviour. To obtain the smallest size of each mode, we use
the next procedure applied on the given example.

Procedure 2: Take the last automata G
Mj
sup. Like in the

section about extension, we extend each mode with the mode
automaton GMa, each state of mode has a name including
the state where GMa is. In other words, we know, for each
state, in which mode the system is. As we are now interested
only by the intramodal behaviour of each mode, we just
have to ”remove” the behaviour which does not represent the
intramodal behaviour and add an idle state representing the
mode when it will be deactivated to respect the specification
that only one mode can be active in the same time. To do
this, we execute the next procedure.

1) We determine in G
Mj
sup, a merge set QMj

mer ⊂ Q
Mj
sup.

The states included in QMj
mer will be states that are not

significant for the mode.
• Not significant for the nominal mode ‘N ’ are all

states which do not have ‘N ’ part of name. These
states are certainly added during the extension of
the different models.

• Not significant for degraded mode called, for ex-
ample, ‘D’ are all states not having ‘D’ in a part of
their name. It means these states do not represent
the intramodal “degraded” behaviour of mode D.

• With this easy identification, we can identify all
states that are not included in the mode where they
are at the instant, and include them in the merge
set QMj

mer.
2) The new state formed by the merge is called qMj

id .
3) We remove all self-loops at qMj

id .
4) If the initial state is included in QMj

mer, then qMj

id will
be the new initial state.

5) If a marked state is included in QMj�
mer , then qMj

id will
be a marked state.�

In the example, the merge function applied on GN
sup,

and GD
sup, give us the final models GN

merge, illustrated
”Fig. 4(b)”, and GD

merge, shown ”Fig. 4(c)”. These models
represent the command law we can use to implement and
control the system.

It is well-known that merging states in an automaton can
cause non-determinism [9]. It is to avoid this that we used the
extended projection function as in section III-D.3. We had
to keep knowledge about the switch events that produced
them. In other words, we anticipated the merge function in
using the extended projection function. Using both of these

functions allows the reduction of complexity without having
non-deterministic automaton.

IV. CONCLUSION

The main contribution of this paper is to present a
advanced framework allows us to design, by multimodal
approach, a whole system. The first step is the intramodal
study where each mode is studied independently. The second
step, and the major contribution of this work, focuses on
formal way to design complete modes including its different
switch dynamics, identify some incompatibilities during the
mode switching and forbid these incompatibilities by using
SCT. Being an off-line study, this work gives us a formal
method to completely design a command law respecting all
specifications the system needs. Current research involves
defining strategies, when incompatible states have been rec-
ognized, using uncontrollable switch events, and when the
supremal controllable does not give us satisfaction on the
general specification of our system.

REFERENCES

[1] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, June
1987. [Online]. Available: citeseer.ist.psu.edu/harel87statecharts.html

[2] F. Jahanian and A. Mok, “Modechart: A specification language for real-
time systems,” IEEE Trans. Softw. Eng., vol. 20, no. 12, pp. 933–947,
1994.

[3] F. Maraninchi and Y. Rémond, “Mode-automata: a new domain-specific
construct for the development of safe critical systems,” Science of
Computer Programming, vol. 1, no. 46, pp. 219–254, March 2003.

[4] J.-P. Talpin, C. Brunette, T. Gautier, and A. Gamatie, “Polychronous
mode automata,” in EMSOFT ’06: Proceedings of the 6th ACM & IEEE
International conference on Embedded software. New York, NY, USA:
ACM Press, 2006, pp. 83–92.

[5] P. Ramadge and W. Wonham, “The control of discrete event systems,”
Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, Jan 1989.

[6] O. Kamach, L. Piétrac, and E. Niel, “Multi-model approach to discrete
events systems: Application to operating mode management,” Math-
ematics and Computers in Simulation, Elsevier, vol. 70, no. 5-6, pp.
394–407, 2005.

[7] G. Faraut, L. Piétrac, and E. Niel, “Identification of incompatible states
in mode switching,” Emerging Technologies and Factory Automation,
2008. ETFA 2008. IEEE International Conference on, pp. 121–128,
Sept. 2008.

[8] W. M. Wonham, “Supervisory control of discrete-event systems. ece
1636f/1637s 2006-07,” 2006, course notes, departement of Electrical
and Computer Engineering, Univeristy of Toronto. [Online]. Available:
www.control.toronto.edu/people/profs/wonham/

[9] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems [Second Edition], C. G. Cassandras and S. Lafortune, Eds.
Springer, 2007.

Fig. 2. Manufacturing system example : (a) system; (b) model GC1 for machine 1; (c) model GC2 for machine 2; (d) mode GMa representing the
mode automaton; (e) model GN� representing the parallel composition of components for the nominal mode; (f) specification EN� about buffer and
machine 2 for nominal mode; (g) model of controlled process for the nominal mode; (h) model of specification for degraded mode; (i) model under
controlled for the degraded mode.

Fig. 3. Manufacturing system example : (a) extended model for the nominal mode; (b) extended specification for the nominal mode; (c) model representing
the supremal controllable sublanguage for the nominal mode.

Fig. 4. Manufacturing system example : (a) labelled model for the nominal mode; (b) merged model representing the final mode for the nominal mode;
(c) merged model representing the final model for the degraded mode.

