
1-4244-1506-3/08/$25.00 ©2008 IEEE

Identification of Incompatible states in Mode Switching

Gregory FARAUT, Laurent PIÉTRAC, Eric NIEL
Laboratoire Ampère, INSA-Lyon

Bât. St-Exupery, 20 av Albert Einstein
69621 Villeurbanne, France

First.Lastname@insa-lyon.fr

Abstract

Mode management is one of the problems in Discrete
Events Systems control design. Even based on a simple
specification, it is very difficult to prove that models of
each mode and mutual interaction are correct. This pa-
per demonstrates that Supervisory Control Theory is an
effective tool for detecting specification incompatibilities
because it clearly separates process, models and speci-
fications. We use simple cases to present a method that
introduces flexibility into mode specification. This method
can be used to adjust or to modify incompatibilities be-
tween specifications and thereby promotes correct mode
switching.

1 Introduction

In relation to their component structures, multimode
systems exhibit different expected, and sometimes con-
flicting, behaviours. Their proper behaviour and more sig-
nificantly, their proper coordination in the event of failures
have become essential in control applications. Improper
behaviours lead typically to very serious consequences,
including human operator injury and material losses, and
affect a wide range of industrial applications. The scope
and complexity of reactive control for multimode man-
agement has grown tremendously in these years and fault
effect consideration has led to stricter requirements, the
validation of which has become increasingly important.
However, when we compare reactive control development
methods and switching mode validation, we realize that
the latter process cannot be managed on the basis of con-
ventional validation techniques (time-consuming scenario
reviews, simulation and testing) and this calls for formal
approaches. Conventionally, a mode is defined by a set
of components running and mutually interacting to fulfil
a required task. In this context, mode switching means
changing component configuration. Reconfiguration ap-
plications are typically component-based, event-driven,
and characterized by clear separation between the system
to be reconfigured and its reconfiguration prescription.
Their adaptation in the Discrete Event Systems (DES)

framework surpasses convenience and is closely related
to switching mode studies.

Most DES research studies to date have focused on
modelling the different existing configurations using com-
positional formalisms: state charts [2], mode charts [3],
hierarchical finite state machines and mode automata
[8, 11]. Few existing studies (excluding failure detec-
tion for reconfiguration [9]) take into account commuta-
tion phenomena, which indeed constitute the major prob-
lem concerning reconfiguration issues. Reconfiguration
means that, due to some external or ultimate internal rea-
son - sensor/actuator failure, low energy - the currently ac-
tive components can no longer ensure the attempted mode,
without reference to its redundancy. Moreover, depending
on the failure event seriousness, the assignment has to be
interrupted and restarted otherwise, if the current operat-
ing mode cannot be maintained. Commutation law-based
properties, such as reachability, observability and control-
lability (latter two applicable to conventional control the-
ory [10, 1]) may be considered from a qualitative stand-
point. Reachability is perhaps the major property concern-
ing commutation phenomena; it implies that a single trace
could exist and be managed, to switch from one mode to
another one. Reachability will be discussed in this paper
in terms of component state coherence compatibility. This
coherence must be determined, when shared components
are used in the both modes affected by reconfiguration.

Our approach is based on the work of [5, 6], which
allows us to study the internal behavior of each mode in-
dependently. The main assumption is that the system is
effectively operated in only one mode at any one time.
Based on previous switching management studies [7, 4]
we propose both process and controlled process model ex-
tensions to formalize compatible states. Compatible states
are those for which common component states are func-
tionally coherent in considered modes (incoming and out-
going operating modes). Our objectives lead us to adopt
a multi-model approach. We also propose a framework
for studying mode switching and, when required, a frame-
work for studying and remedying deadlocks.

This paper focuses on the switching problem within
the context of automata-modelled DES. Section 2 intro-
duces Supervisory Control Theory (SCT), on which this

121

work is formally based. We define explicitly the SCT ap-
proach adopted to describe the switching capability used
in its direct (controller synthesis with respect to process
and requirement) and inverse (controller synthesis with
respect to process and attempted controlled behaviour)
approaches. By distinguishing common, faulty or good
components, Section 3 formalizes both intramodal and in-
termodal operation. The notion of compatibility is then
considered by managing possible switched states (still
valid with common components), when typical faulty
component-related events occur (i.e. failure, repair). Sec-
tion 4 provides a simple example which illustrates the new
notions and extended models introduced in this paper.

2 Supervisory control theory

Ramadge and Wonham’s theory [10] underpins the
study of Discrete Event System control. This theory is
based on separation between the model representing what
the system can do (the process), the model of what the
system must or must not do (the liveness and safety prop-
erties of the process), the model of what the system does
(the controlled process) and the model of what the system
should do (the desired language).

The process [12] G is a generator G =
(Q,Σ, δ, q0, Qm) where Q is the finite state set, Σ the
finite alphabet of symbols (event labels), δ : Q × Σ → Q
is the partial transition function, q0 is the initial state
and Qm ⊆ Q is the set of marked states. States exist
for periods of time (duration), whereas events occur
instantaneously, asynchronously and at virtually random
(unpredictable) times. For a machine, examples of states
are ”idle”, ”operating”, ”broken down”, ”under repair”.
Examples of events are ”machine starts to work”, ”breaks
down”, ”completes work” or ”start to repair”.

For the alphabet Σ, we have the partition Σ = Σc∪Σuc

where the disjoint subsets Σc and Σuc comprise control-
lable and uncontrollable events respectively. We can also
have the partition Σ = Σo ∪ Σuo where the disjoint sub-
sets Σo and Σuo comprise observable and unobservable
events respectively. No particular relation is assumed to
exist between Σc and Σo: in particular, an event can be
controllable but unobservable.

The languages associated with G are the closed be-
haviour L(G) = {s ∈ Σ∗|δ(q0, s)!} and the marked be-
haviour Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm}. L(G) rep-
resents the set of all possible trajectories, i.e. all possible
system behaviours, whereas Lm(G) represents the subset
of trajectories leading to a marked state. These states al-
low us to model ends of tasks, states to be reached or states
in which the system can be stopped.

For a process G, there are two types of conventional
problems.

1. Problem 1: given process G and specification E,
is there a system behaviour that complies with this
specification?

2. Problem 2: given process G and desired language K,
can we restrict the process dynamic evolution of K?

Problem 1 illustrates a “direct approach”. Here,
the specification is modelled by an automaton E =
(X, Σ, ξ, x0, Xm) where X is the finite state set, Σ the
same alphabet of symbols as in G, ξ : X×Σ → X the par-
tial transition function, x0 the initial state and Xm ⊆ X
the subset of marked states. The designer checks the ex-
istence of the product composition [1] of ‘G’ and ‘E’,
meaning a subset of system behaviour complying with the
specification. This behaviour also represents the restric-
tion on the process behaviour through action of a super-
visor ‘S’, such as S : L(G) −→ Γ is a function from
the language generated by G to the power set of enabled
events Γ = {γ ∈ Pwr(Σ)| Σu ⊆ γ} where Pwr(Σ)
is the set of all subsets of Σ. If the language generated
by G||E can be controlled with respect to ‘G’, it then
represents the obtained behaviour through the action of
‘S’ on ‘G’ (S/G). If the generated language cannot be
controlled, we determine the largest controllable sublan-
guage, called ”supremal controllable sublanguage”. The
process or specification must be modified, if the supremal
controllable sublanguage is empty.

Figure 1. Two types of problems

Problem 2 illustrates an “inverse approach”, in which
the designer knows the expected behaviour for the con-
trolled process (specified by a language K). He then
checks whether there is supervisor that can limit the pro-
cess G behaviour, such as L(S/G) = K. If this supervi-
sor exists, the language K is the language of the controlled
process S/G. If the supervisor does not exists, we proceed
to obtain the largest sublanguage of K using the supremal
controllable in the same way as in the direct approach.

3 Mode switching

3.1 Overview
In this paper, we consider systems with several com-

ponents (a plant with machines, a machine with actuators,
etc.), which are used for different tasks. To increase avail-
ability, the system is required to remain in operation even
if its components fail and this is only possible if a number
of alternative components are available. These available
components can stand in for failed components by per-
forming the same task or by performing other tasks.

122

The system can be operated in one particular mode
(production, initialization, etc.) at any time. In mode
switching terms, our contribution comprises proposing a
framework, in which:

• Each mode is studied independently and separately.
In most cases, a mode is characterized by the compo-
nents used and by the components necessary to enter
or exit of it;

• The (intramodal) specifications to be satisfied by the
system in this mode are studied on models built in-
dependently of others specifications. SCT theory is
applied “normally” in each mode (we limit ourselves
to a centralized case);

• The (intermodal) specifications about switching
modes can occur directly in more that intramodal
specifications in the considered modes. This will de-
pend if switch events can be observed and controlled
or not. The main problem is to determine the state of
the model (process, controlled process and specifica-
tion), when we leave a mode (the ”initial mode”) to
enter another mode (the ”final mode”).

The following sections describe successively the in-
tramodal framework for each mode and the intermodal de-
sign process.

3.2 Definitions
A system is composed by different components. The

dynamic of each component is the same irrespective of
the system mode. These dynamics include possible fail-
ures and recoveries. Such events will be used to model
switching modes.

Definition 1 A component is modelled by an automaton
Gi where Gi = (Qi,Σi, δi, q0,i, Qm,i), with:

• Qi is the state set of component i;

• Σi is the event set of component i, including three
partitions:

– Σi = Σc ∪ Σuc;
– Σi = Σo ∪ Σuo;
– Σ�

i ⊂ Σi the set of switch events such as it
is composed by fault events ”fi” and repair
events ”ri”;

• δi is the transition function and includes δ�
i which

represents the set of failures or repairs transitions;

• q0,i is the initial state of component i;

• Qm,i is the marked states set of component i;

Definition 2 The list of operating modes is denoted by
M = {M1, M2, . . . , Mn}, where n ∈ N and n ≥ 1 (by
convention, we assume the initial active mode is M1). C
is the list of components and CMj� the list of components
used in the mode Mj , where CMj = CMj� ∪ CMj← ∪
CMj→ such that:

• CMj� is the list of components representing the in-
ternal behavior of mode Mj;

• CMj← is the list of components that can enter into
the mode Mj;

• CMj→ is the list of components that can exit from
mode Mj;

• CMj� = CMj← ∪ CMj→ is the list of switch compo-
nents;

No particular relation is assumed to exist between
CMj�, CMj← and CMj→ except they are all included in
C: in particular, a component can be included in :

• CMj�, but not be a switch component CMj�.

• CMj� and in CMj←. It means this component is used
in the mode and is necessary to enter into this mode,

• CMj← or CMj→. It means this component is only
necessary to switch (enter or exit).

ΣMj� ⊂ ΣMj is the set of commutation events of
mode Mj: ΣMj� =

⋃
i∈(CMj�) Σ�

i .

Σ� is the set of commutation events: Σ� =
⋃

i∈C Σ�
i =⋃

Mj∈M ΣMj�.

M = {M1, M2, M3}
C = {G1, G2, G3, G4}
CM1 = {G1, G2, G4}
CM2 = {G1, G3, G4}
CM3 = {G1, G2}
Σ� = {f2, r2, f4, r4}
ΣM1� = {f2, r2, f4, r4}
ΣM2� = {f4, r4}
ΣM3� = {f2, r2}

Figure 2. Example of mode decomposition

Figure.2 is an example of mode decomposition. We
have three modes, in which the mode GM1 is composed
of components G1, G2 and G4. From this (nominal)
modes, a switch is possible to the (degraded) mode
GM2 , if the component G4 breaks down, or GM3 if
it is the component G2 that breaks down. Thus, the
mode GM3 is only composed of component G1, (i.e.
CM3� = {G1}), but is extended with the component G2

(CM3← = CM3→ = {G2}) because it is this component
that causes the switch from the mode GM1 to GM3 . In the
same way, the mode GM2 is composed of components G1

and G3 (CM3� = {G1, G3}), but is also extended next
with the components G4 (CM2← = CM2→ = {G4})that
is responsible for the switch.

123

3.3 intramodal design
For each mode Mj , the process GMj resulting from

parallel composition [1] of automata Gi of components
used in this mode is defined on ΣMj =

⋃
i∈CMj� Σi.

For each mode Mj , the specification EMj (problem
1) or the desired language KMj (problem 2) are defined
on the alphabet ΣMj . The overall specification EMj is
the product composition of automata of specifications to
be complied with in this mode. After designing the ‘n’
modes required, the designer obtains ‘n’ uncontrolled pro-
cesses GMj , ‘n’ specifications EMj and ‘n’ controlled
processes SMj /GMj (called from now G

Mj
sup). It remains

to consider the switching modes.
The intramodal design, as shown in fig.3, is very sim-

ilar to process of supervisory control theory used to syn-
thesize the command law. In the intramodal case, we limit
us to internal behavior of each mode to build G

Mj
sup.

Figure 3. Intramodal design framework

3.4 Intermodal design
At this step, we have completely built the internal be-

havior of modes. In this section, we will include the ex-
ternal behavior, and detect the trajectories connecting the
modes between them. The framework that we will use is
shown in fig.8 in Appendix A .

3.4.1 Extension of controlled process

The system is represented by several automata G
Mj
sup, so

we have to add an information item to the models allowing
us to determine the behaviour to enter into, or to exit from,
the modes. To do this, we extend each model G

Mj
sup by

parallel composition with the components of CMj← and
CMj→ that are not already included in CMj�.

Definition 3 Let G
Mj
sup be such that :

G
Mj
sup = (QMj

sup, Σ
Mj
sup, δ

Mj
sup, q

Mj

sup,0, Q
Mj
sup,m).

GMj� is the extended model of G
Mj
sup where :

GMj� = G
Mj
sup||(||A∈(CMj�\ CMj�)A)

3.4.2 Process tracking

The correlation between modes is represented by switch
events generated by components (shared or not). We have

indeed to identify which switch event will exit of the ini-
tial mode to go into the final mode. The dynamic be-
haviour of the initial mode stops where the dynamic be-
haviour of the final mode begins. To identify these con-
nections between modes, we take all traces leading to
a switch event in the language of the initial mode and
project them onto the final mode. In other words, we
let KMj (G

Mj� → GMk�), the desired language which
generates switch events in mode Mj leading to the mode
Mk and including all traces leading to a first occurrence
switch event. The words in KMj (G

Mj� → GMk�) may
not have any switch events but would lead to a state where
a switch event could happen. To follow these traces from
the initial mode and detect them in the final mode to iden-
tify the equivalent states where a switch event could hap-
pen, we use the extended projection function introduced
by authors of [5].

Formally, the extended projection function Pj,k is de-
fined as follows:

Definition 4 Let Pj,k : Σ∗
j → Σ∗

k such as ∀σ ∈ Σj and
∀s ∈ Σ∗

j :

Pj,k(ε) = ε

Pj,k(sσ) =
{

Pj,k(s)σ if σ ∈ Σj ∩ Σk

Pj,k(s) if σ ∈ Σj\Σk

In words, this extended projection function definition
limits neither alphabet Σj nor Σk and in the case in which
Σk ⊆ Σj , this function is equivalent to the projection used
in SCT [1]. This function erases effectively from a string
s those events σ that are not included in the set of com-
mon events Σj ∩ Σk. This allows us to obtain only the
equivalent trace in the new mode.

In the following procedure, we apply the above defini-
tions to track trajectories representing commutations.

Procedure 1 Let two modes M1 and M2, where GM1
sup

(respec. GM2
sup) is the parallel composition of compo-

nents Ga and Gc (respec. Gb and Gc). The second
mode is extended with component ‘Ga’ responsible for
the switch. These modes share the component ‘Gc’, we
assume the initial (nominal) mode is GM1�, and the fi-
nal (degraded) mode is GMb�. The switch events fa

and ra are generated by component “Ga”. The event
fa causes the switch from initial to final mode, while the
event ra causes the switch from final to initial mode. Thus,
fa ∈ (ΣM1→and ΣM2←), and ra ∈ (ΣM1←and ΣM2→).

1. We calculate the language KM1(G
M1� → GM2�)

that represents all traces leading to a state qM1�
k

where a first occurrence of switch event fa could
happen in GM1�. k ∈ N and represents the index
of the language leading to a different commutation.

2. We projet KM1(G
M1� → GM2�) onto L(GM2�)

to obtain KM2(G
M1� → GM2�). These traces

lead us to states qM2�
k where qM2�

k ∈ δ(qM2�, fa).

124

3. At this step, there are two possible cases:

• The switch event (identified by one trace) ex-
ists in the initial mode and final mode. In this
case, we just have to rename this switch event
by adding specific sub-indices,

• The switch event exists in the initial mode, but
not in the final mode. This case means one
trace, which deactivates the initial mode exists,
but no one exists on the final mode to active it.
It is this kind of trace, identified by a switch
event, which will generate an error if we imple-
ment the model without controlling this trace.

4. When all words representing a possible switch event
are labeled, we can remove, from the models, all no-
labeled switch events (fa and ra in our procedure)
because these represent events that will never hap-
pen, so it is unnecessary to keep the knowledge of
these commutations.

5. We repeat this operation for all switch events iden-
tified by KM1,l(GM1� → GM2�). So we keep the
knowledge of what causes the commutation in both
modes.

The second case of step ‘3’ is really important for us,
because it is this kind of switch that gives us the incom-
patible states in mode switching. It means that, in the case
where at least one trace of this type exists, our system can
be broken and unable to keep running; This is, in total
contradiction with that we wanted and required. We will
need to keep the knowledge of incompatible states, to for-
bid in “intermodal” specifications (treated in the section
3.4.4) all traces that are leading us to one of these incom-
patible states.
Labelling the models GMj� gives us the new models
G

Mj�
lab .
We have to make a comment at this point.

It is obvious that the initial state in the final mode
will depend on the trace in the initial mode previously
calculated. It also means that the different traces possibly
lead to different initial states. Thus, when we again want
to calculate the traces leading to a switch event in the
final mode that go into another mode or to go back to
the initial mode, we will have to take into consideration
all possible initial states where we could enter. It simply
means that instead of calculating all traces beginning at
only one state, the initial state, in this mode we will, and
should, calculate traces for each possible initial state, to
avoid missing a trace existing from one particular initial
state, but not from others. Nevertheless, the calculation is
more complicated but not more complex.

3.4.3 Merge function

At this step, no model of the modes has more than one
switch event with the same label, and for each switch

event, there is at most one other switch event, in another
mode, that has the same label. Now, we can abstract our
model of the modes by using a merge function.

Procedure 2 Let a automate G
Mj�
lab be composed by par-

allel composition of components include in CMj . Let the
states of G

Mj�
lab be named (qa, qb) with qa ∈ Qa and qb ∈

Qb (where Qa, Qb are the state sets of some components).
Let also Qi = Ni∪Fi, Ni∩Fi = φ, where Ni means that
the component ‘i’ works well and, in opposite, Fi means
that the component is broken due to a failure event.

1. We determine in G
Mj�
lab , a merge set Q

Mj�
mer with

Q
Mj�
mer ⊂ Q

Mj�
lab . The states included in Q

Mj�
mer will

be states that are not significant for the mode.

• Not significant for the nominal mode means, for
example, all states named by Fa or Fb, because
the nominal mode does not have normally the
behavior of Ga of Gb when one of these are
broken.

• Not significant for degraded mode means, for
example, all states that are not named by
(Fa, qb), ∀qb. This is because, in the degraded
mode, we only want the behavior of our system
when the component Ga is broken.

• In the same way, we can make a table with
all possible combinations with the states of the
components. Thus, in our example, we have
four modes. The nominal mode will only in-
clude states of the form (Na, Nb) and we merge
all the others states, and three degraded modes
: (Fa, Nb) which is the mode where the com-
ponent Ga is broken, (Na, Fb) when the com-
ponent Gb is broken and (Fa, Fb) when both
components Ga and Gb are broken.

2. The new state formed by the merge is called q
Mj

id .

3. We remove all self-loops at q
Mj

id .

4. If the initial state is included in Q
Mj�
mer , then q

Mj

id will
be the new initial state.

5. If a marked state is included in Q
Mj�
mer , then q

Mj

id will
be a marked state.

It is well-known that merging states in an automaton
can cause non-determinism [1]. It is to avoid this that we
used the extended projection function as in section 3.4.2.
We had to keep knowledge about the switch events that
produced them. In other words, we anticipated the merge
function in using the extended projection function. Using
both of these functions allows to reduce complexity with-
out having non-deterministic automaton.

125

At the end of this step, our models of the modes are
totally built. We have some news automata G

Mj�
merge =

(QMj�
merge, Σ

Mj�
merge, δ

Mj�
merge, q

Mj�
merge,0, Q

Mj�
merge,m) such that:

• Q
Mj�
merge = (QMj�

lab \ Q
Mj�
mer) ∪ {qMj

id },

• ΣMj�
merge =

ΣMj�
lab \ ⋃

i∈CMj� Σ�
i ∪ ⋃

i∈(CMj� \ CMj�) Σi

• δ
Mj�
merge = δ

Mj�
lab \ δ(qa, s, qb) with qa, qb ∈ Q

Mj�
mer

• q
Mj�
merge,0 ={

q
Mj�
lab,0 if q

Mj�
lab,0 /∈ Q

Mj�
mer

q
Mj

id if q
Mj�
lab,0 ∈ Q

Mj�
mer

• Q
Mj�
merge,m ={
Q

Mj�
lab,m if Q

Mj�
lab,m ∩ Q

Mj�
mer = φ

Q
Mj�
lab,m\QMj�

mer ∪ {qMj

id } if not

3.4.4 Controlled process by intermodal specifications

We have our models of the modes, including their own
internal specifications. Their size is reduced due to the
merge function and the correlation between modes has
been kept with the label function using the extended pro-
jection function. Resulting from all these steps, we have
new automata G

Mj�
merge, the model under control, extended,

labeled, and merged of mode Mj .
We said at this end of the introduction that the system

has to operate in only one mode at any one time. This
is to avoid conflicts between modes, i.e. two or more
modes could be activated in the same time. We also iden-
tified in Section 3.4.2 some incompatible states, where a
switch event could happen, and the traces leading to these
states. It meant these switch events could happen in the
initial mode, but they might not exist in the final mode.
These commutations will lock our system and, further-
more, could cause irreversible damage. Thus, we have
to forbid the traces that could lead to a switch event.

To satisfy these specifications, included in intermodal
specification called EMj�, we propose to use as base
the models shown in Fig.4. It includes the model for the
nominal mode, and the model for degraded mode. These
models provide the first specification to avoid conflicts be-
tween modes in certifying that only one mode is active in
any one time. Moreover, we can add on these models the
forbidden switch events that were previously identified.
Thus, it is straightforward to build intermodal specifica-
tions in using these models and adding forbidden switch
events. We can build the controlled process with this spec-
ification, and we will use the supremal controllable sub-
language in the case where the process is not controllable.

These controlled model of G
Mj�
merge including the switch

specification (EMj�) represent the final automata called

Figure 4. Base models to design intermodal
specifications

G
Mj�
sup and it will be these automata that we will use to

implement our system.

4 Example

Consider the manufacturing system illustrated in
Fig.5(a); the system comprises four machines and one
buffer. The machines are used to process a part and the
stock is used as a ‘buffer’ between the machines. The ‘ma-
chine 1’(respec. ‘machine 2’) , denoted G1 (respec. G2),
are modeled as shown in Fig.5(b).The automaton mod-
elling ‘machine 3’ (respec. ‘machine 4’) are denoted G3

(respec. G4) and are shown in Fig.5(c). The events si
and ei represent a new process and the end of the process
respectively. Whilst all these events are observable, they
are not necessary controllable. The ‘machine 1’ (respec.
‘machine 2’) can break down due to malfunctioning and
this fact is modelled using the observable, uncontrollable
event f1 (respec. f2). Repair is modelled using the ob-
servable, controllable event r1 (respec. r2).

4.1 Intramodal design
The modal decomposition of the system, where modes

use components necessary to run, is modelled in Fig.5(d).
These models must be controlled according to the specifi-
cation defined by a specification automaton, like the nom-
inal specification Enom representing buffer specification,
shown in Fig.5(e). It is unlikely that L(EMj) is control-
lable with respect to L(GMj), thus we use the supremal
controllable sublanguage of L(GMj

sup) to control our four
modes, as illustrated in Fig.5(f).

4.2 Intermodal design
Our system features four modes (one nominal and three

degraded). We extend each mode with switch compo-
nents that we did not include before. This extension is
illustrated in Fig.6(a). The nominal mode is not extended
with another component because it is already composed
of both machines ‘1’ and ‘2’. We extend the other modes
with missing components, G1 to Gd1

sup, G2 to Gd2
sup and

both G1 and G2 to Gd3
sup. We show in Fig.6(b) the ex-

tended controlled process of nominal mode. To compare
at this step, the degraded modes 1, 2 and 3 have respec-
tively 27, 24 and 204 states. Fig.6(c) shows again the pre-
vious nominal mode, but in which we track the first oc-
currence of failure events to switch (and the first occur-
rence of repair in degraded modes) to label these switch

126

Figure 5. Manufacturing system example : (a) system; (b) model Gi for ‘machines 1 and 2’; (c)
model Gi for ‘machines 3 and 4’; (d) modal decomposition of the system; (e) specification Enom

about buffer for nominal mode; (f) modal decomposition of controlled processes.

Figure 6. Manufacturing system example : (a) modal decomposition with controlled processes ex-
tended; (b) extended controlled process for nominal mode; (c) the extended controlled process of
nominal mode including label of switch event; (d) labeled extended controlled process of nominal
mode after merging the non-significant states.

Figure 7. Manufacturing system example : (a) Switch specification of nominal mode; (b) final con-
trolled process of nominal mode; (c) switch specification of degraded mode d1; (d) final controlled
process of degraded mode d1.

127

events. We see also in this figure some switch events that
were not labeled. Indeed, it means they are not significant
events (either they are not the first occurrence, or there is
not trace in others modes that could generate these events).
At the end, we use the merge function on states represent-
ing a failure for one component, and labeled by (F1, x)
or (x, F2). The result of the merge function is shown in
Fig.6(d). We now see that we would have obtained a non-
deterministic automaton if we had not labeled before us-
ing the merge function. In this case, all “rix” would be
“ri” and “fix” would be “fi”.

From G
Mj�
merge, we apply at each mode their own spec-

ification EMj� as illustrated in Fig.7(a) for the nominal
mode, or more interestingly, in Fig.7(c) where we have
forbidden two switch events (r111, r18 and r19) because
we do not want to repair while the replacement machine is
running. The controlled processes of the nominal and the
first degraded mode are shown in Fig.7(b) and Fig.7(d).

5 Conclusion

This paper discusses component state coherency and
addresses the issue of incompatible state definition and
recognition when mode switching is required, according
to the hypothesis that common components run in a set
of different operating modes. Incompatibility has been
considered as a nonexistent state (component state in-
coherency) for either the current operating mode or the
switched operating mode. We addresses formally this
recognition capability in terms of reachability. Switching
management by tracking configuration changes forms the
starting stage and the major contribution of this work fo-
cuses on formalizing incompatibility of this nature. Cur-
rent research involves defining strategies, when incom-
patible states have been recognized, using uncontrollable
switch events, and when the supremal controllable do not
give us satisfaction regarding the general specification of
our system.

6 Acknowledgement

The authors would like to thanks Stéphane Lafortune,
Richard Hill and Hongwei Liao for the comments that
they provided on the preparation of this paper.

7 Appendix A

We give the framework used in section.3.4, hoping it
can give some help to follow the article and avoid confuse
with notation. The framework is shown in fig.8

References

[1] C. G. Cassandras and S. Lafortune. Introduction to dis-
crete event systems [Second Edition]. Springer, 2007.

[2] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3):231–
274, June 1987.

Figure 8. Intermodal design framework

[3] F. Jahanian and A. Mok. Modechart: A specification lan-
guage for real-time systems. IEEE Trans. Softw. Eng.,
20(12):933–947, 1994.

[4] L. N. E. Kamach, O.; Pietrac. Forbidden and preforbidden
states in the multi-model approach. Computational Engi-
neering in Systems Applications, IMACS Multiconference
on, 2:1550–1557, 4-6 Oct. 2006.

[5] O. Kamach, L. Piétrac, and E. Niel. Multi-model approach
to discrete events systems: Application to operating mode
management. Mathematics and Computers in Simulation,
Elsevier, 70(5-6):394–407, 2005.

[6] O. Kamach, L. Piétrac, and E. Niel. Supervisory unique-
ness for operating mode systems. In 16th IFAC world
congress, Prague, 4–8 July 2005.

[7] A. Khatab and E. Niel. State feedback stabilizing con-
troller for the failure recovery of timed discrete event sys-
tems. In WODES’02 : Proceedings of the Sixth Interna-
tional Workshop on Discrete Event Systems (WODES’02),
page 113, Washington, DC, USA, 2002. IEEE Computer
Society.

[8] F. Maraninchi and Y. Rémond. Mode-automata: a new
domain-specific construct for the development of safe
critical systems. Science of Computer Programming,
1(46):219–254, March 2003.

[9] A. Paoli and S. Lafortune. Safe diagnosability for fault-
tolerant supervision of discrete-event systems. Automat-
ica, 41(8):1335–1347, August 2005.

[10] P. Ramadge and W. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81–98, Jan 1989.

[11] J.-P. Talpin, C. Brunette, T. Gautier, and A. Gamatie. Poly-
chronous mode automata. In EMSOFT ’06: Proceed-
ings of the 6th ACM & IEEE International conference on
Embedded software, pages 83–92, New York, NY, USA,
2006. ACM Press.

[12] W. M. Wonham. Supervisory control of discrete-event
systems. ece 1636f/1637s 2006-07. course notes, departe-
ment of Electrical and Computer Engineering, Univeristy
of Toronto, 2006.

128

	Main
	Welcome Messages
	Committees
	Keynotes
	Program at a Glance
	Industry Day
	Technical Program
	Reviewers
	Author Index
	Local Information

