
1-4244-1506-3/08/$25.00 ©2008 IEEE

A supervisor implementation approach in Discrete Controller Synthesis

Emil Dumitrescu Mingming Ren Laurent Pietrac Eric Niel

Laboratoire AMPERE

INSA-Lyon

F-69621

FRANCE

Abstract

We investigate the implementation of supervisors

generated by symbolic BDD-based Discrete Con-

troller Synthesis (DCS). The implementation tech-

nique proposed is able to solve both control non-

determinism and the structural incompatibility intro-

duced by symbolic DCS. We highlight and illustrate

interesting structural properties of the supervisor im-

plementation. Our technique is illustrated on a real-

life example modeling a System-on-chip component:

a serial to parallel converter.

1 Introduction

The supervisor implementation problem we inves-

tigate is specific to the context of Discrete Controller

Synthesis (DCS) [11, 19, 23]. More precisely, we

only focus on symbolic DCS techniques [11, 23] as

they are more efficient in handling large state spaces

which characterize real-life designs.

The implementation issue raises multiple ques-

tions, mostly related to efficiency, autonomy, fault-

tolerance, distribution, robustness and compactness

requirements of the implemented supervisor. How-

ever, prior to adressing any of these aspects, two

main problems need to be solved.

On the one hand, the control non-determinism.

Most synthesized supervisors are control non-

deterministic, in the sense that if several control pos-

sibilities exist at the same time, all of them are avail-

able. A choice must be made either by a human op-

erator or by some heuristic method able to automat-

ically solve this non-determinism. Deterministic su-

pervisors are rarely obtained directly after applying

DCS.

On the other hand, the structural incompatibility

with respect to the modular design patterns. This

problem only concerns symbolic DCS. Indeed, sym-

bolic supervisors do not feature input/output signals.

They are represented by a Boolean equation encod-

ing all acceptable control solutions. A straightfor-

ward supervisor implementation would involve per-

forming on-line resolution of the supervisor at the

run-time. This requires a Boolean solver software

tool, physically running on a microprocessor (dedi-

cated or not). The target architecture of the imple-

mented supervisor is a software architecture, which

has limitations in terms of run-time efficiency.

Contributions

Our objective is to solve the control non-determinism

and find a adequate solution to the structural in-

compatibility problem. Solving the control non-

determinism guarantees an autonomous implementa-

tion. Solving the structural incompatibility problem

amounts to finding a representation of the supervisor

as a set of control functions. This has multiple ad-

vantages. First and most important, a hardware im-

plementation can be obtained, which is sometimes

interesting when execution speed is seeked. Second,

the supervisor implementation represented as a set of

control functions appears to be much more compact

than the initial supervisor.

Besides, we attempt to translate the classical con-

trol loop architecture into the hardware design con-

text. We identify a class of hardware design prob-

lems for which our control architecture is suitable.

State of the art

Supervisor implementation has been investigated in

the past, with a special concern about execution on a

PLC [8, 9, 17, 20].

Most research we are aware of have achieved su-

1433

pervisor implementation by developing hints in order

to successively refine the control objective and finally

yield a deterministic supervisor (i.e. a controller).

The implementation aproach proposed in [16] is

based on a latency minimization criterion. Non-

determinism is solved such that the progress speed

towards a target set is maximized. This is a constraint

specific to minimizing protocol latency. However,

once this optimality criterion is satisfied, any remain-

ing non-determinism is solved by making arbitrary

choices. This work has been generalized in [15, 18].

Other implementation approaches implement the

non-deterministic choice by a random choice. The

same problem can also be addressed by choosing ei-

ther fixed or dynamic priority mechanisms over the

controllable input set.

Our technique achieves deterministic supervisor

implementation by applying a decomposition princi-

ple to the supervisor. Similar approaches have been

proposed and used in different contexts. In [1], a

parametric decomposition technique is applied over

Boolean predicates in the context of formal verifi-

cation of hardware designs. This technique applies

a decomposition principle quite close to ours. In

[22], a controller implementation technique is pre-

sented. Controllers are obtained by optimal synthe-

sis (with quantitative criteria); the technique is also

symbolic, but it produces a strict subset of the su-

pervisor. In [13] the authors study the triangulation

of a polynomial equation over ternary values, with

the same objective of achieving a supervisor imple-

mentation. The same objective is also investigated

in [3], where the control synthesis technique oper-

ates directly from specifications (by contrast to DCS,

which needs a plant). A supervisor hardware imple-

mentation approach starting from Petri nets is pre-

sented in [5].

The outline of this paper is the following: Section

II presents basic concept definitions and notations.

Section III presents our supervisor implementation

method. Section IV illustrates the application of our

method on a hardware design. Section V gives infor-

mation about the implementation framework that has

been used.

2 Definitions

2.1 Controllable finite state machines

Let P be a controllable finite state machine de-

fined as follows:

P = 〈I, S, δ, s0, O, λ〉

such that:

• I is the set of Boolean input variables, such that

I = U ∪ C , and U ∩ C = ∅;

• U = {u0, · · · , ur−1}, r > 0 is the set of

uncontrollable input variables. We note u =
(u0, · · · , ur−1) a tuple of elements of U ;

• C = {c0, · · · , cp−1}, p > 0 is the set of

controllable input variables. We note c =
(c0, · · · , cp−1) a tuple of elements of C;

• S = {s0, · · · , sn−1}, n > 0 is the set of state

variables. We note s = (s0, · · · , sn−1), n > 0 a

tuple of elements of S;

• δ : B
p+r × B

n → B
n is the transition function

of P ;

• s0 ∈ B
n is the initial state of P ;

• O = {o0, · · · , om−1},m > 0 is the set of out-

put variables;

• λ : B
p+r × B

n → B
m is the output function

associated to O.

In the sequel, we refer to P as the plant i.e. the sys-

tem to be controlled by DCS. The sets of states of

P are handled by their characteristic function. Let

E ⊂ B
n. The characteristic function of E is defined

as

CE : B
n → B and CE(e) = 1⇔ e ∈ E

The usual set operations have corresponding

Boolean operators : ′′+′′ (logical “or”) performs the

set union and ′′.′′ (logical “and”) performs the set

intersection. The logical negation CE expresses the

complement of E with respect to B
n.

Let S′ = {s′0, · · · , s
′

n−1} be a set of next state

variables. The transition relation T of P is defined

as the set of all legal transitions s

u,c
7−−→ s

′ such that

s
′ = δ(s,u, c):

T (s,u, c, s′) =
n−1
∏

i=0

s′i ⇔ δi(u, c, s)

1434

2.2 Symbolic Discrete Controller Synthesis

DCS has been developed in [19], using language

theory. In parallel, research in design automation has

shown the great interest of symbolic representation

of sets of states using BDDs [4], in order to tackle

complexity issues due to exponential state space ex-

plosion [14]. DCS developments on the top of sym-

bolic techniques have been proposed in [2, 11, 23].

We assume in the sequel that our system is fully

observable. The symbolic DCS approach handles

sets of states and/or transitions, instead of languages.

For a given plant P and a desired specification Q,

called a control objective, symbolic DCS computes a

supervisor X guaranteeing that P always satisfies Q.

The control architecture is illustrated in Figure 1.

Supervisor

s

o

c P

u

Figure 1. Control Architecture

The computation proceeds following two steps:

• compute the invariant under control (IUC) sub-

set of states of P . As long as P remains inside

IUC the violation of Q can be indefinitely post-

poned. The computation details of IUC is be-

yond the scope of this paper. Details are avail-

able in [2, 11];

• compute the supervisor X : the set of all tran-

sitions s

u,c
7−−→ of P leading to IUC. The exact

expression of the supervisor is:

X (s,u, c) = ∃s′ : T (s,u, c, s′).IUC(s′)

A control solution exists iff s0 ∈ IUC. From a dy-

namic point of view, X is said to “play” with the con-

trollable inputs C , against the environment, “play-

ing” with the uncontrollable inputs U of P , with the

objective of never reaching a state violating Q. Thus,

for any state s ∈ IUC and for any uncontrollable

input vector u ∈ B
r, the supervisor X computes ad-

equate values for the controllable inputs c so that the

transition fired by P leads into IUC.

The symbolic supervisor X has two important

properties: (1) it is maximally permissive i.e. all

transitions of P leading to IUC are contained in

P
u

c
env

s

o

c

Controller f

Figure 2. Target control architecture

X and (2) it is control non-deterministic i.e. for

a given current state and a given uncontrollable in-

put value, there may exist more than one possible

successor states in IUC. Our objective is to imple-

ment X , which amounts to solving the control non-

determinism, while attempting to conserve maximal

permissivity. This is developed in the next section.

3 Symbolic Supervisor Implementation

3.1 Requirements for structural compatibility

The supervisor implementation generally amounts

to solving the control non-determinism. The deter-

ministic control solution obtained is known as the

controller and is generally a subset of the synthesized

supervisor.

However, besides non-determinism, symbolic

DCS also raises an architectural problem: the su-

pervisor X is represented by a Boolean characteris-

tic function encoding acceptable transitions with re-

spect to the control objective. The Boolean expres-

sion of X is structurally incompatible with P and

thus with the control architecture represented in Fig-

ure 1. This structural incompatibility is usually elim-

inated by solving the Boolean equation:

X (s,u, c) = 1 (1)

either “on-line” or “off-line”.

The implementation technique we present ad-

dresses both of these issues, as depicted in Figure 2.

The control non-determinism is made explicit by

adding supplementary environment variables c
env,

each cenv
i , i = 0 . . . p − 1 corresponding to ci. The

structural incompatibility is solved by computing in-

dividual expressions for each controllable variable ci

of P . This amounts to solving equation (1) off-line.

Starting from the the supervisor X we construct a

controller as a tuple of p control functions:

fi : B
n × B

p+r → B, i = 0 . . . p− 1, such that:

ci = fi(s0, . . . , sn−1, u0, . . . , ur−1, c
env
0 , . . . , cenv

p−1)
(2)

1435

Table 1. Thuth table of the Boole decompo-

sition of X with respect to ci

X|ci=1 X|ci=0 ci X

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The relationship between X and f is expressed by

the following equation:

X (s,u, c) = ∃cenv
0 , . . . , cenv

p−1 :

p−1
∏

i=0

(ci ⇔ fi(s,u, cenv))

(3)

In other terms, we wish that (1) any control solution

allowed by X can be reproduced by f and (2) any

control solution computed by f is also accepted by

X . Finding f satisfying equation (3) also amounts to

making explicit the control non-determinism of X by

introducing the auxiliary environment variables c
env

as displayed in Figure 2.

3.2 Symbolic implementation algorithm

A major condition prior to implementing X is that

it must be satisfiable:

∀s ∈ IUC,∀u ∈ B
r,∃c : X (s,u, c) (4)

Our implementation algorithm relies on the Boole

decomposition of X , which is applied to the control-

lable variables ci, i = 0 . . . p− 1:

X = ci.X|ci=0 + ci.X|ci=1

The impact of variable ci on the satisfiability of X
is summarized by the truth Table 1. Our objective is

to find an expression yielding the values of ci such

that X is satisfied. The values of ci such that X
is satisfied are summarized by Table 2. This table

summarizes the values that a controllable variable ci

may take, so that the supervisor equation (1) is satis-

fied. As pointed out by this table, the simultaneous

satisfaction of both cofactors X|ci=0 and X|ci=1 has

Table 2. Values of ci when X is satisfiable

X|ci=1 X|ci=0 ci

0 1 0

1 0 1

1 1 0 or 1 (cenv
i)

a special meaning: regardless of the value of ci, all

transitions allowed by X lead to IUC. This charac-

terizes the control non-determinism with respect to

the controllable variable ci. Each time ci has no im-

pact on the satisfaction of X , its value is driven by

cenv
i . Structurally, variables cenv are auxiliary envi-

ronment (input) variables as pointed out in Figure 2.

According to Table 2, the following Boolean ex-

pression computes the value of fi, associated to the

controllable variable ci:

fi = X|ci=0.X|ci=1 + cenv
i .X|ci=1.X|ci=0 (5)

The expression (5) represents the basic step of the

controller implementation algorithm presented in Al-

gorithm 1: f0 is computed by assuming that X holds.

f0 is substituted for c0 inside X , yielding X1. Then

the algorithm computes f1 assuming that X1 holds,

and so on.

Algorithm 1 Controller implementation algorithm

Require: X , a satisfiable supervisor

1: {starts with X and computes f0, . . . , fp−1}
2: {intermediate results: X0, . . .Xp}
3: X0 ← X
4: for i = 0→ p− 1 do

5: fi ← Xi|ci=0.Xi|ci=1 + cenv
i .Xi|ci=1.Xi|ci=0

6: Xi+1 ← substitute fi for ci in Xi

7: end for

Algorithm 1 produces the tuple of functions:

f =









f0(s,u, cenv
0 , f1, . . . , fp−1)

f1(s,u, cenv
1 , f2, . . . , fp−1)

.

fp−1(s,u, cenv
p−1)









as well as a residual expression Xp(s,u) obtained by

successive substitutions of fi for ci into X . In or-

der to guarantee that all control solutions generated

by f are accepted by X , we must show that Xp is a

tautology: ∀s ∈ IUC,∀u ∈ B
r : Xp

Theorem 1 Xp is a tautology.

1436

Proof By applying the successive substitutions of fi

into Xi the following expression is obtained for Xp:

Xp = ∃cp−1, . . . ,∃c0 : X (s,u, c)

Thus, the predicate ∀s ∈ IUC,∀u ∈ B
r : Xp is

identical to our initial assumption expressed in (4).

This theorem shows that by substituting f for c in

X we obtain a tautology and hence that all control

solutions generated by f are contained in X . Con-

versely, we need to prove that:

Theorem 2 All control solutions contained in X can

be reproduced by f .

Proof The above statement is equivalent to:

∀s,∀u,∀c : (X (s,u, c) =⇒ ∃cenv : c⇔ f(s,u, cenv))

By applying the existential quantification and by

substituting the expression of f given in (5), the

right term of the implication is equivalent to X +
∏p−1

i=0
ci.X|ci=0.X|ci=1. Thus, the above implication

is a tautology.

It is important to note that the controller f we ob-

tain depends on the variable order used when apply-

ing the Shannon decomposition. This order estab-

lishes an evaluation priority: fp−1 is evaluated first,

and its value is used to evaluate fp−2 . . . f0.

The complexity of our generation algorithm

strongly depends on the size X in terms of BDD

nodes. The most expensive operation we perform is

the generalized co-factor, which is used to substitute

an expression for a BDD variable. This operation is

exponential in the number of variables of X .

The controller generation is illustrated in the next

section on a hardware component modeling a serial-

parallel converter.

4 Example

4.1 The serial-parallel converter

We illustrate the application of our controller gen-

eration technique in a hardware design context, with

the aim of constructing a correct-by-construction

serial-parallel converter.

Figure 3 presents the architecture of the serial-

parallel converter. It is composed of two compo-

nents: a Serial Buffer (SB) and a Word Construc-

tion Buffer (WCB) which are composed together by a

busy

rq

z0

z1

z2

z3

burst

rqo

dwo
w

rqi

akn1

akn2

dwi4

dwi3

dwi2

dwi1

dwi0

SB

WCB

Figure 3. Architecture of the serial-parallel

converter

synchronous product. Modeling details can be found

in [7].

Component SB receives serial pieces of 4-bits

data and performs a parity correction check. Depend-

ing on the result, SB sends an acknowledge or an

error code via akn to the sender of the data.

Serial data arrive according to a well-established

transaction: the sender writes the data over dw and

rises the input request rqi, meaning that valid input

data is available. After one transition, corresponding

to one synchronous time moment, SB acknowledges

the sender by communicating the result of the par-

ity check. Thus, incoming transactions always last

two synchronous time moments. Note that the hand-

shaking mechanism is only used to guarantee correct

incoming data with respect to the parity check. Be-

sides, the sender is assumed to maintain its request

and data till it is acknowledged.

The SB sends all pieces of correct serial data to

the WCB. This component implements two behav-

iors:

• it accumulates serial data inside an internal

buffer, by constructing 8-bit words;

• when the internal buffer is full, it flushes it by

sending all parallel pieces of data it has previ-

ously constructed. During the flush, WCB is

busy and it cannot receive any incoming data. It

becomes available again once the flush is over.

SB implements a pipeline behavior, i.e. at a given

time t it can simultaneously send correct serial data

to the WCB and acknowledge an incoming piece of

serial data to the sender.

4.2 Correction analysis

Components SB and WCB are off-the-shelf

components, which have been thoroughly verified in-

dependently of each other. Both of them are correct

1437

with respect to their functional requirements. How-

ever, they were not initially designed to work to-

gether.

We wish to obtain the serial-parallel converter as

a new functionality obtained by combining two ex-

isting correct components. However, when SB and

WCB are combined together the resulting compo-

nent does not behave as expected. One important

property the converter should feature is that all pieces

of serial data must be eventually retransmitted i.e. a

piece of serial data is never lost. This property is

expressed by the following temporal logic formula

written in CTL [6]:

No data loss: AG busy ∧ rqo

Thus, SB should never send a piece of data to the

WCB during a flush. This property holds except for

the following scenario: at some time t, WCB has al-

most filled its internal buffer except for one free slot

of serial data. At the same moment, SB sends a piece

of serial data to WCB and acknowledges a pieces of

input serial data simultaneously. At time t+1, WCB

is full and starts a flush. However, at the same mo-

ment SB sends the piece of serial data it has previ-

ously acquired. As WCB is busy and flushing, this

piece of data is lost. This scenario is confirmed by

symbolic model-checking, which proves that prop-

erty “No data loss” is false.

Our goal is to ensure that property “No data loss”

holds without rewriting neither SB nor WCB. We

use symbolic DCS in order to synthesize a correct-

ing patch that ensures the satisfaction of the above

property.

4.3 Discrete Controller Synthesis

In order to apply DCS to the converter the designer

must indicate which input variables are controllable.

There is no a priori indication about the input to be

controlled. However, it can be observed that by de-

laying the arrival of the input serial data adequately,

the data loss can always be avoided. Technically, de-

laying the arrival of an incoming serial data amounts

to delaying the arrival of the incoming request rqi.

Thus, we choose rqi to be the controllable input vari-

able. The remaining input variables of the plant are

considered uncontrollable.

The supervisor has been synthesized by the Sigali

DCS tool [12]. Then, we have implemented the su-

pervisor by generating a controller according to the

Algorithm 1 presented in Section III. The controlled

converter architecture is represented in Figure 4 and

is is easy to check that it corresponds to the generic

target architecture shown in Figure 2.

The implementation algorithm has introduced the

auxiliary environment variable rqi-env, correspond-

ing to the controllable variable rqi. Note that the in-

coming request is now rqi-env, which is driven by

the environment and read by the controller. Accord-

ing to the value of rqi-env and the internal state of

the plant (i.e. the serial-parallel converter), the con-

troller assigns adequate values to rqi.

Controller

z0

z1

z2

z3

burst

dwo

rqo

busy

rq

w

dwi4

dwi3

dwi2

dwi1

dwi0

rqi

akn2

akn1

SB

WCB

state variables

rqi−env

Figure 4. Error correction by DCS

Hence, the controller we obtain acts like a filter on

the rqi-env input. When an incoming piece of se-

rial data arrives, the controller either transmits it to

the SB, or blocks it if that piece of data is likely to

be lost. At any time t, if an incoming piece of se-

rial data arrives, rqi-env is raised. Two scenarios are

possible:

• there remains only one free memory slot inside

WCB, and this slot is about to be filled by SB

with a piece of previously acquired data. At

this moment, if rqi-env is acknowledged, the

data is lost. However, upon reception of rqi-

env the controller sets rqi = 0. Thus, incoming

requests are not transmitted to the SB;

• there remains more than one free memory slot

inside WCB. In that case when receiving rqi-

env the controller sets rqi = 1. The incoming

requests are transmitted to the SB so that they

can be acknowledged.

Thus, the input transaction is delayed, in the sense

that SB has no knowing about it as long as the data

cannot be safely stored and retransmitted. Initially,

incoming transactions were only used to ensure par-

ity correction; by applying DCS, these transactions

ensure in addition that the serial-parallel converter is

ready.

Our controller shifts the control non-determinism

towards the environment. When a non-deterministic

1438

choice is left on the value of rqi, this non-

determinism is solved by the environment through

rqi-env. By construction of our controller, the value

assigned to rqi-env by the environment is directly

fed to rqi.

According to our example, the input filtering

mechanism established by addition of a bug correct-

ing controller heaviliy relies on the assumption of

non-determinism. Indeed, if the synthesized con-

troller was completely deterministic then the func-

tional decompostion would produce a real closed-

loop system, which is of interest in automatic control,

but less interesting with respect to our bug-correction

objective.

The controller we obtain is a BDD over the input

and state variables of the converter. It contains about

200 nodes, which is why we choose not to display it.

5 Implementation

The serial-parallel converter was modeled using

the Mode Automata language and Matou compiler

[10]. The supervisor was synthesized by the Sigali

[12] symbolic DCS tool. Interactive simulations have

been performed using the dedicated tool SigalSimu.

The design flow is illustrated in Figure 5.

Our implementation algorithm has been coded on

the top of the CUDD library [21]. It reads the super-

visor generated by Sigali and produces a controller

which is composed of several BDDs each represent-

ing a control function. After the implementation step,

the plant together with the implemented controller

can be fed to standard design tools such as batch sim-

ulation, hardware synthesis or formal verification.

System model matou SigalSimu

Sigali supervisor
Specifications

(control objective)

controller

batch simulation

(non−interactive) synthesis

hardware

interacitve

simulation

verification

formal

implementation

Existing flow

New features

Figure 5. Existing and proposed synthesis

framework

6 Conclusion

We presented and illustrated a technique imple-

menting supervisors synthesized by symbolic DCS

tools. This technique tackles the control non-

determinism issue as well as the structural incompat-

ibility of the supervisor with respect to the modular

structure expected for it. A very important advan-

tage is that our controller implementation conserves

the integrality of the control solutions produced by

DCS. This feature is very interesting with respect to

straightforward determinization of a synthesized su-

pervisor, which always produces a strict subsets of

X . Besides, it is to be noted that the implemented su-

pervisor f is generally more compact than X , which

makes it easier to handle.

Still it may be argued about the introduction of the

auxiliary variables cenv and about their physical cor-

respondence in general. Actually, the control archi-

tecture we implement is a rather particular interpreta-

tion of the traditional control loop shown in Figure 1.

The main difficulty comes from the translation of this

control architecture to the hardware design context.

The distinction between controllable/uncontrollable

variables is not natural. Input variables are generally

dedicated to the environment, and cannot be simply

encapsulated inside the control loop. The control ar-

chitecture we propose leaves the input/output inter-

face unchanged. The controllable inputs are actually

filtered by the controller. It should be noted that fil-

tering the inputs of a design is generally not safe with

respect to its expected behavior. In section IV we

have identified a class of aplications in hardware de-

sign where input filtering can be safely achieved.

Our choice for symbolic DCS techniques was

mainly motivated by their ability to treat real-life

systems: they are less subject to state space explo-

sion than state-enumerative DCS techniques directly

based on [19].

It ought however be noted that implementing a

supervisor generated with enumerative techniques is

algorithmically easier, as they do not exhibit any

structural incompatibility with respect to the plant

they control. The explicit supervisor implementation

merely amounts to solving control non-determinism.

However, enumerative DCS is algorithmically ex-

pensive when applied on real-life designs.

On the other hand, while symbolic DCS is less

subject to state space explosion than enumerative

DCS, its complexity still remains exponential in the

number of state variables encoding the state of the

1439

plant. Moreover, our symbolic implementation algo-

rithm adds its own complexity, which is not negligi-

ble. This is why, future research directions include

developing compositional synthesis techniques, as

well as directly synthesizing a controller instead of

implementing a supervisor. Besides, we shall extend

our study with figures illustrating the time and mem-

ory performance of our technique.

Acknowledgements.

The authors would like to thank Hervé Marchand

for useful discussions about polynomial triangulation

techniques.

References

[1] M. Aagaard, R. Jones, and C.-J. Seger. For-

mal verification using parametric representations of

boolean constraints. In Design Automation Confer-

ence, 1999. Proceedings. 36th, pages 402–407, 21-

25 June 1999.

[2] E. Asarin, O. Maler, and A. Pnueli. Symbolic con-

troller synthesis for discrete and timed systems. In

Hybrid Systems, pages 1–20, 1994.

[3] R. Bloem, S. Galler, B. Jobstmann, N. Piterman,

A. Pnueli, and M. Weiglhofer. Interactive presen-

tation: Automatic hardware synthesis from specifi-

cations: a case study. In DATE ’07: Proceedings

of the conference on Design, automation and test

in Europe, pages 1188–1193, New York, NY, USA,

2007. ACM Press.

[4] R. Bryant. Graph-based algorithms for boolean

function manipulation. IEEE Transactions on Com-

puters, August 1986.

[5] S. Bulach, A. Brauchle, H.-J. Pfleiderer, and

Z. Kucerovsky. Design and implementation of dis-

crete event control systems: a petri net based hard-

ware approach. Discrete Event Dynamic Systems:

Theory and Applications, (12):287–309, 2002.

[6] E. Clarke and E. Emerson. Design and synthesis

of synchronization skeletons using branching time

temporal logic. In Logic of Programs, volume 131

of LNCS. Springer-Verlag, 1981.

[7] E. Dumitrescu and M. Ren. Automatic error correc-

tion based on discrete controller synthesis. In The

4th International Federation of Automatic Control

Conference on Management and Control of Produc-

tion and Logistics, IFAC MCPL’07, 2007.

[8] M. Fabian and A. Hellgren. Plc-based implementa-

tion of supervisory control for discrete event sys-

tems. In Proceedings of the 37th IEEE Confer-

ence on Decision and Control, Tampa, Florida USA,

1998.

[9] H. Flordal, M. Fabian, K. Akesson, and D. Spen-

sieri. Automatic model generation and plc-code

implementation for interlocking policies in indus-

trial robot cells. Control Engineering Practice,

15(11):1416–1426, Nov. 2007.

[10] F. Maraninchi and Y. Rémond. Mode-automata: a

new domain-specific construct for the development

of safe critical systems. Science of Computer Pro-

gramming, 46(3):219–254, 2003.

[11] H. Marchand. Méthode de Synthèse d’automatismes

décrits par des systèmes à événements discrets finis.

PhD thesis, Université* de Rennes I, 1997.

[12] H. Marchand, P. Bournai, M. L. Borgne, and

P. L. Guernic. Synthesis of discrete-event con-

trollers based on the Signal environment. Discrete

Event Dynamic System: Theory and Applications,

10(4):325–346, Oct. 2000.

[13] H. Marchand and M. Le Borgne. Note sur la tri-

angulation d’une équation polynomiale. Technical

report, IRISA, March 2004.

[14] K. L. McMillan. Symbolic Model Checking - An ap-

proach to the state explosion problem. PhD thesis,

Carnegie Mellon University, 1992.

[15] R. Passerone, L. de Alfaro, and T. Henzinger. Con-

vertibility verification and converter synthesis: Two

faces of the same coin. In International Conferenca

on Computer Aided Design (ICCAD), 2002.

[16] R. Passerone, J. A. Rowson, and A. L. Sangiovanni-

Vincentelli. Automatic synthesis of interfaces be-

tween incompatible protocols. In Design Automa-

tion Conference, pages 8–13, 1998.

[17] M. H. Queiroz and J. E. R. Cury. Synthesis and im-

plementation of local modular supervisory control

for a manufacturing cell. In 6th international Work-

shop On Discrete Event Systems (WODES), page 6,

2002.

[18] J.-B. Raclet. Residual for component specifications.

In Proceedings of the 4th International Workshop

on Formal Aspects of Component Software, Sophia-

Antipolis, France, September 2007.

[19] P. Ramadge and W. Wonham. The control of dis-

crete event systems. Proceedings of the IEEE,

77(1):81–98, Jan. 1989.

[20] D. B. Silva, E. A. Santos, A. D. Vieira, and M. A.

de Paula. Application of the supervisory control

theory to automated systems of multi-product man-

ufacturing. In 12th IEEE international conference

on Emerging Technologies and Factory Automation

(ETFA), pages 689–696, Patras, Greece, september

25–28 2007. IEEE.

[21] F. Somenzi. CUDD: CU decision diagram package

release, 1998.

[22] E. Tronci. Automatic synthesis of controllers from

formal specifications. In ICFEM, pages 134–143,

1998.

[23] A. Vahidi, M. Fabian, and B. Lennartson. Effi-

cient supervisory synthesis of large systems. Con-

trol Engineering Practice, 14(10):1157–1167, Oc-

tober 2006.

1440

	Main
	Welcome Messages
	Committees
	Keynotes
	Program at a Glance
	Industry Day
	Technical Program
	Reviewers
	Author Index
	Local Information

