Reliability Engineering and System Safety 174 (2018) 29-40

Reliability Engineering and System Safety

&% RELIABILITY
ENGINEERING

& SYSTEM
SAFETY

o

journal homepage: www.elsevier.com/locate/ress s

Contents lists available at ScienceDirect

A formal framework for the safe design of the Autonomous Driving n

supervision

Check for
updates |

Romain Cuer®"*, Laurent Piétrac? Eric Niel?, Saidou Diallo®, Nicoleta Minoiu-Enache",

Christophe Dang-Van-Nhan"

2 Université de Lyon, CNRS, INSA-Lyon, AMPERE, F-69621 Villeurbanne, France
b Renault S.A.S., 1 avenue du Golf, 78280 Guyancourt, France

ARTICLE INFO

Keywords:

Autonomous vehicle

Systems engineering

Safety analysis

Requirements analysis

Design systems

Discrete-event dynamic systems
Redundancy control

ABSTRACT

The autonomous vehicle is meant to drive by itself, without any driver intervention (for the levels 4 and 5 of
automated driving, according to the National Highway Traffic Safety Administration(NHTSA)). This car includes
a new function, called Autonomous Driving (AD) function, in charge of driving the vehicle when it is authorized.
This function may be in different states (basically active or inactive), that shall be managed by a sub-function,
named supervision. The main focus of this work is to ensure that the supervision of a function, performed by a
safety critical embedded automotive control system (controlled systems are not considered), respects functional
and safety requirements. Usually two processes are involved in the system design: the systems engineering pro-
cess and the safety one. The first process defines the functional requirements on the function while the safety one
specifies redundant sub-functions (realizing together the function) allowing to ensure a continuous service under
failure. Since two different aspects of the system are specified, it is a major challenge to make all requirements
consistent, from the outset of the design process. In this paper, a method is precisely proposed to address this
issue. A progressive reinforcement of the treated requirements is achieved by means of formal state models. In
fact, the proposed approach permits to build state models from requirements initially expressed in natural lan-
guage. Potential ambiguities, incompletenesses or undertones in requirements are in this way gradually deleted.
The enrichment of conventional formal verification of control properties with safety requirements constitutes
the main originality of the deployed method and contributes to solve inconsistencies between functional and
safety verification processes. In addition, the application of the method to the design of AD function supervision
highlights its efficiency in an industrial context.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The autonomous vehicle causes a break in the automotive embed-

Indeed, the AD system, in charge of the new function Autonomous Driv-
ing, is integrated in a specific type of vehicle, already equipped with
several ADAS (Advanced Driver Assistance Systems such as Adaptive

ded systems design mainly because it is no more possible to count on
the driver reaction in order to keep always the vehicle safe. One of the
main arguments in favor of autonomous driving is actually the poten-
tial huge reduction of crashes, precisely by eliminating common drivers
mistakes [1,2]. This paradigm change will deeply impact the design pro-
cess. But the autonomous vehicle design must also take into account the
constraints of the existing and be built on the know-how, considering
the high time-to-market pressure [3,4]. The autonomous vehicle design
can be carried out following the usual automotive engineering process.

* Corresponding author.
E-mail address: romain.cuer@insa-lyon.fr (R. Cuer).

https://doi.org/10.1016/j.ress.2018.01.014

Cruise Controller or Automatic Parking). This approach is then consis-
tent with the introduction of other ADAS functions. However, if these
systems were already safety critical [5,6], the challenge is higher for the
AD system because the driver is no more the ultimate safety barrier [7].
In addition, prove the AD system safety only by validation tests appears
almost impossible [8]. It is consequently crucial to ensure safe design
of the AD system. Moreover, parallel processes of systems engineering
and safety are difficult to integrate, given that the differences in terms
of planning, constraints, objectives and work teams, as recently high-
lighted in [9]. Taofifenua [10] also emphases this issue and illustrates
it in Fig. 1.

On related fields, like aerospace and railways, this topic is also
central. Specific methods (such as Safety driven design methodology
[11]) and software environment, like SCADE [12], are implemented in

Received 19 May 2017; Received in revised form 14 November 2017; Accepted 20 January 2018

Available online 2 February 2018
0951-8320/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ress.2018.01.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ress
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2018.01.014&domain=pdf
mailto:romain.cuer@insa-lyon.fr
https://doi.org/10.1016/j.ress.2018.01.014

R. Cuer et al.

Reliability Engineering and System Safety 174 (2018) 29-40

System
. dependability studies

Systémw

Sub}s\tem
T dependability studies

\

Suhsysté‘wq design
. omponent,
- dependability-studies

design .

’

/

Subsystem'\?ali dation ’//

- Component)d’épendability

.

N
Comp nnent\‘%one nt-validation

“«
Systenr'dependability
b validation

SystemVM

,r" Subgyslen;v't]ependability
validatiop”

’

.

validation ./

.

Fig. 1. Integration of safety approach in systems engineering process [10].

aerospace sector. Regarding railways area, the B-method [13,14] has al-
ready proven its efficiency. These methods are clearly effective in their
application domains, as illustrated by the proven safety of trains and air-
crafts. Nevertheless, it should be noted that the particular constraints of
automotive field in terms of time-to-market pressure, extremely variable
conditions (countries, regulations, driver abilities, climatic conditions...)
strength constraints of the existing, costs reduction, limited available
space and volume, and organization chart (formal methods are much
more common for aeronautics and railways engineers than for automo-
tive ones) [3,4,15] make the adaptation of these methods difficult. Con-
sequently, accurate and adapted means, methods and tools, inspired by
this experience, have to be proposed in the context of automotive area.
The proposed approach contributes to address this issue. More particu-
larly, it deals with the control system (realizing the designed function):
the controlled systems are out of the scope of this study. Special empha-
sis is focused on verification of deterministic requirements specifying
expected behavior in normal conditions on one hand, and safety require-
ments addressing redundancy and reconfiguration management in case
of failures on the other hand.

The paper is structured as follows. In the Section 2, related works
are presented and our position is specified. The Section 3 is dedicated
to the framework proposed in this paper, that allows safely designing
a function performed by an automotive embedded system. Specifically,
the method deployed is centered on the behavior of the function: the
main aim is to ensure that the intended function remains always in a
safe state, whatever happens. This section contains the main contribu-
tions: the approach itself, that specifies a formal behavior model, correct
by construction, from requirements written in natural language; and the
reinforcement of the requirements, notably by highlighting ambiguities,
incompleteness (in the sense of incomplete formulation of a requirement
itself, not completeness of all requirements), inconsistencies or implicit
early in the design process. The contributions of this study are focused
on methodological aspects, by improving the current engineering pro-
cesses, explicitly the design and safety ones. The Section 4 illustrates the
interest of the approach by applying it to the AD system design. Lastly,
the Section 5 remains the principal conclusions and contributions and
outlines future works.

2. Related works

The consideration of the risks analysis at the first step of the sys-
tem design process is an acknowledged problem for safety critical sys-
tems [16] and in particular for the automotive embedded systems
[5,6,17,18]. More precisely, the main problem addressed concerns the
impacts of safety requirements (requirements provided from safety anal-
yses) on system design and the verification of design compliance with

30

such requirements. It shall also be guaranteed that the system respects
an expected behavior in normal conditions, determined by functional
requirements. Many works already address this issue.

The most shared way to deal with this topic consists in modeling
safety-critical embedded systems in a unique formal, or semi-formal,
model [17-23]. It actually eases the merging between system design ac-
tivities and safety ones, in terms of modeling activities. However, in the
context of this work, we more specifically focus on methods aiming at
verifying requirements compliance. The three main verification meth-
ods implemented [22], both in industrial domains and in the research
community, are:

e The simulation: this widespread technique [19,24] is based on the
symbolic execution of models and the realization of compliance
tests corresponding to the users’ needs. The symbolic execution re-
quires an operational semantic defining in a deterministic manner
the model behavior in reaction to input stimuli. The main limit is
the completeness of the tested scenarios. The simulation gives only
a presumption of correct behavior but is strongly correlated to the
expertise and experience of the practitioners;

o The theorem proving: the verification is viewed as a theorem to prove
from a set of axioms. The program and the properties shall be trans-
formed in mathematical objects. Conclusions are inferred from the
description of events or operations allowing to animate the system
[25]. The principal limits are that the complete automation is rarely
possible and the proof preparation requires the determination of el-
ements exceeding the framework of the specifications;

e The model checking: automatized technique that, considering a finite
state model of a system and a formal property, systematically veri-
fies if this property is valid for this model [26]. This method is di-
vided into three phases: the modeling of the intended system, the
execution of the model checking algorithm, and the analysis of the re-
sults (property satisfied, non satisfied or saturate memory). Different
tools implement this method: UPPAAL! [22,23,27], UPPAAL-Port>
[18] or NuSMV? [28]. Among the main limitations of model check-
ing, one can cite [26] that its applicability is subject to decidability
issues. Thus, for infinite-state systems, model checking is, in general,
not computable. Besides, it suffers from the combinatorial explosion
problem. Finally, it requires expertise in finding appropriate abstrac-
tions to obtain smaller system models and to state properties in the
logical formalism used.

L http://www.uppaal.org/.
2 http://www.it.uu.se/research/group/darts/uppaal/port/.
3 http://nusmv.fbk.eu/.

http://www.uppaal.org/
http://www.it.uu.se/research/group/darts/uppaal/port/
http://nusmv.fbk.eu/

R. Cuer et al.

The technique of model checking is retained for the deployed method-
ology. Indeed, the simulation is certainly a widespread and proven prac-
tice in the automotive field, but it remains conditional on a trial and
error approach. Moreover, the safety of the autonomous vehicle can-
not be reasonably proven only by validation tests and simulations [8].
Furthermore, the limits of the theorem proving prevent, up to now, its ap-
plication in an operational automotive context. The proposed approach
contributes to reduce the last limitation of the model checking mentioned
above. Hence, this article aims more specifically at analyzing the prob-
lem of the expressiveness of properties to check. Some works tackle the
requirements analysis, their decomposition and formalization [29,30].
Nevertheless, the required assumptions to proceed to formalization are
not highlighted and the impacts of such assumptions not analyzed.
Ghazel et al. [31] proposes a process for progressive formalization of
requirements initially expressed in natural language. However, the em-
phasis is on the refinement of the requirements (translation of gross re-
quirement into a requirement called “formalizable”) but the formaliza-
tion itself is less detailed. The method of algebraic synthesis [32] permits
to formalize (in Boolean expressions) requirements expressed in natu-
ral language, while pruning their potential inconsistencies. Nonetheless,
the Boolean expressions employed hardly account for temporal notions.
Lastly, the Supervisory Control Theory (SCT) [33] allows building for-
mal models of supervisors, correct by construction, from a description
of the uncontrolled system behavior (without constraints) and the spec-
ifications that it shall respect. But, its application as part of this study is
made difficult by the absence of appropriated description of the uncon-
trolled system behavior. In addition, we do not attempt to generate su-
pervisor. Besides, the formalization of requirements, generally initially
informal, remains a challenging issue [34].

This state of the art shows that there is a lack of approaches pro-
gressively improving both control system modeling and requirements
that the system has to meet. The method deployed in this article pre-
cisely contributes to fill this gap, inspiring from main concepts previ-
ously presented. Such as B-method and algebraic synthesis, the require-
ments are gradually consolidated to eliminate errors, ambiguities, in-
consistencies... However, contrarily to those methods, the goal of the
proposed process is to provide clear and unambiguous specifications to
subcontractors (who realize the designed system) instead of generating
executable code. The approach, using formal methods (model checking
and principle of automata composition applied in the modeling steps
of SCT) and supported by expert advice, allows highlighting errors in
requirements formulation at the beginning of the design process. More-
over, the proposed method enriches conventional formal verification
of control properties with some properties as given by safety issues. In
this way, it originally contributes to solve the problematic of combin-
ing functional and safety verification processes. New requirements are
formulated by analyzing the formal verification results with different ex-
perts. Moreover, the next step of the proposed framework (not included
in this paper) will permit to consider implementation constraints.

3. Proposed methodology
3.1. Automotive embedded systems design

The automotive embedded systems design follows the usual (in in-
dustry) V-model. It is roughly composed of a design phase, during which
the models of the system are built, then the realization is done, after
which the integration of the system in the vehicle is undertaken. As
part of this study, we focus on the safety requirements, resulting from
risks analysis (part of the subsystem dependability studies in Fig. 1) and
on functional requirements arising from functional analysis (part of the
subsystem design in Fig. 1). These two elements constitute the input data
of this work. Risks analysis is made in the context of the safety process,
which is different from the systems engineering one (Fig. 1). In fact,
the main objective of the systems engineering process is to design as
soon as possible and as cost-effective as possible the system intended.

31

Reliability Engineering and System Safety 174 (2018) 29-40

Functional
Requirements

Safety

Input data Requirements

[A1 Build Functional Behavior Model (3.3)] [A2 Build Safety Behavior Model (3.3)]

[A3 Confront FBM to designers (3.4)) [A4 Confront SBM to safety engineers (3.4))

Activities C lf .

l

[AS Build Complete Behavior Model (3.5) J

l

@6 Confront CBM to designers and safety engineers (3.5)]

Requirements
modified
Formal properties

Assumptions

Output data Document

State models

Fig. 2. Approach deployed.

Regarding the safety process, it aims at guaranteeing the system safety
under any circumstances. As outlined in the literature [5,10,16,17], the
planning of the two processes is difficult to synchronize. The following
paragraphs precisely present a methodology facilitating these processes
integration. This method is applicable to the supervision of a generic
function performed by a safety-critical automotive embedded system.
The role of the supervision is to manage the states of the designed func-
tion, for safety reasons. One verifies, in this study, if the behavior model
of the supervision respects its specifications. So, modeling activities, and
no supervisor synthesis, are undertaken.

3.2. Approach overview

Fig. 2 gives an overview of the method adopted. This figure shows
that two input data launch the process: the functional requirements, and
the safety requirements, both related to the function safely intended.
Then, two activities are led in parallel (A1l and A2): building of the Func-
tional Behavior Model (FBM) and building of the Safety Behavior Model
(SBM). These models are conditioned from the associated assumptions,
needed to construct the state models from requirements, and listed in
the Assumptions Document (see Section 3.3). To achieve these first activi-
ties, the tool UPPAAL is used. UPPAAL is an integrated tool environment
for modeling, validation and verification of real-time systems, modeled
as networks of timed automata. As explained in [35], UPPAAL consists
of three main parts: a description language, a simulator and a model
checker. In accordance with this work, only the description language
and the model checker will be used. Three reasons drive this choice of
tool. The first one is that the behavior of systems communicating with
each other (and particularly their synchronization) can be easily mod-
eled, that precisely fit to the studied system. Moreover, the graphical
view of state models are common for engineers. Secondly, it is possi-
ble in UPPAAL to express formal properties in a textual form (in the
tab named Verifier). Those properties are directly inferred from require-
ments analyzed, that considerably eases the traceability between the
design (state models on which properties are checked) and the require-
ments. In addition, UPPAAL can provide a formal proof of properties
compliance. The last reason concerns the temporal possibilities offered
by UPPAAL that could be utilized when further implementation details
will be known. Besides its functionalities and an easy handling, UPPAAL
is also a largely well-known tool, both in academic field [36,37] and in
a more industrial context [38-40].

The two following activities (A3 and A4) consist in confronting the
models obtained to the experts. Since two aspects of the function were

R. Cuer et al.

i |A1.1. Select relevant requirements >

!

! | 7

El.Z. Build state modelsJ E\1.3. Formalize requirements J
Formulate assumptions

Requirements

Selected
requirements

Expected states

Formal properties

£

State models

l Assumptions
] Document

[AlA Formally verify the selected requirements

6

Fig. 3. Details on models construction.

studied, two activities are actually carried out. On the one hand, the FBM
is confronted to the system designers (A3). On the other hand, the SBM
is analyzed with safety engineers (A4). It can be then stated that result-
ing discrete state models (named FBM; and SBM;) actually correspond
to the expected behavior of the function supervision (see Section 3.4).
This stage is crucial because it shows a main interest of the approach. In-
deed, two assumptions types are made in the precedent activities: mod-
eling assumptions, that remain hypotheses, and interpretation assump-
tions leading to requirements modification and even new requirements
formulation (details in Section 3.3). All these assumptions are submit-
ted to the experts knowledge. A new set of requirements is then issued
and stored in the document Requirements modified (see Fig. 2). These re-
quirements are complete, unambiguous, consistent, clear and verifiable
(usually required qualities for requirement [41-43]). They are accom-
panied by associated modeling assumptions as well as formal properties
inferred.

Nevertheless, one cannot verify the safety requirements on the FBM;
and the functional requirements on SBM;. Furthermore, the safety re-
quirements address redundant sub-functions while the functional re-
quirements are allocated to the whole function intended. Since the ab-
straction levels are different, it is required to build a Complete Behavior
Model (CBM) on which all requirements are verifiable (see Section 3.5).
This is precisely the aim of the last activities (A5 and A6 in Fig. 2) of
the approach. Given that the activity A5 relies on the operation of par-
allel composition of automata (see Section 3.5), the tool Supremica is
used. This tool is an integrated environment for verification, synthesis
and simulation of discrete event systems [44]. As UPPAAL, Supremica
is also an acknowledge tool [45-47]. Lastly, as previously, the resulting
state model is conditioned from the assumptions and leads to modify
requirements or determine new requirements (activity A6).

3.3. State models construction

Fig. 3 shows the details of the activities A1 and A2 (these two ac-
tivities are done similarly, sub-activities of A2 are named A2.1, A2.2,
A2.3 and A2.4) of the whole approach depicted in the Fig. 2. These ac-
tivities structure this paragraph. The bold arrows represent control flow
whereas the other arrows correspond to data flow.

Fig. 4 illustrates how the intended function is structured: it is glob-
ally composed of N redundant sub-functions (for safety and availability
reasons) that together perform the function. Each sub-function includes,
among other functions, a functional block in charge of managing the
states of the sub-function, called Supervision i (for the i sub-function).
The designed function also contains a sub-function Supervision that han-
dles the states of the whole intended function. The architecture depicted
in Fig. 4 is a statical view of the designed function structure. It consti-
tutes an input data and shows how considered requirements are allo-

32

Reliability Engineering and System Safety 174 (2018) 29-40

Intended function

Sub-function 1

Supervision 1

Sub-function 2
Safety
Requirements

Supervision 2

Sub-function N

Supervision N

Functional

Requirements Supervision

Fig. 4. Requirements allocation.

cated to the statical functional architecture. It does not show however
the precise redundancy policy and reconfiguration management, that
are specified by certain safety requirements (see Section 4.5). The Re-
quirements are composed of the functional requirements and the safety
ones, both expressed in natural language. The functional requirements
define the behavior of the global function studied, from a user’s perspec-
tive. They determine actions required in the different states of the func-
tion as well as the conditions to commute from one state to another. As
shown in the Fig. 4, all the functional requirements are allocated to the
developed function. The safety requirements result from the risks anal-
ysis. The fundamental difference face to the functional requirements is
that the safety requirements address the N redundant sub-functions that
together perform the whole function (whose nominal behavior is deter-
mined by functional requirements).

The second available input data consist in two lists of states (Expected
states in Fig. 3): one from the functional perspective and another one
regarding the safety viewpoint.

To proceed to the selection of the relevant requirements (Al.1 in
Fig. 3), one criterion, directly inferred from the main objective of this
study (ensure that the intended function remains always in a safe state,
see Section 1), is defined. This criterion stipulates:

The requirement content shall be relative to a state change.

It can be determined from the list of Expected states. The criterion
application actually corresponds to the selection of the requirements
allocated to the Supervision, at sub-function level and at global func-
tion level (see Fig. 4). For instance, some functional requirements might
specify particular actions required in a given state. Thus this type of re-
quirements is rejected. In fact, it is assumed that the actuators control
functions are inherently consistent. So, when one (and only one) sub-
function is in a state in which it shall command actuators, no contradic-
tory commands can be computed. On the contrary, some risks appear
when two sub-functions simultaneously command actuators, because
the commands may be contradictory and lead to global instability. One
aim of this study is to avoid this type of situations, by ensuring that only
one sub-function really controls actuators. Otherwise, since risks analy-
sis starts from the undesirable events, safety requirements can address
other aspects (such as acquisition of data, data processing or diagnosis)
than the supervision of the sub-function. These requirements are not
retained too.

From the selected requirements and by formulating additional as-
sumptions, the state models can be built, by means of UPPAAL (Al.2 in
the Fig. 3). Two types of assumptions are made:

1. Interpretation assumption: it is an assumption taken to complete a se-
lected requirement. A complete requirement is a requirement defining
one or several initial state(s), one or several condition(s) and one
final state. The automata built in the context of this study are de-

R. Cuer et al.

terministic because a unique decision shall be taken. It is a question
of command models (aiming to serve as specifications) and not of
analysis models, where all situations are studied. To transform the
incomplete requirements, a rule is in addition stated: the final state
shall be different from the initial one. Then an incomplete require-
ment may lead to several (complete) requirements (precise number
depending on the information contained in the requirement), con-
ditioned from their interpretation assumptions. For each interpreta-
tion, a state model might be built. One design (possibly with some
variants) will finally be chosen (during activities A3 and A4) to carry
out the design process.

2. Modeling assumption: it is an assumption on the overall framework of
the study. It is also related to the way to practically build the state
models. In any case, a modeling assumption remains an hypothesis,
even after design choices.

UPPAAL is the tool chosen to build state models. It shall be precised
how this tool is used as part of this study. Formally, the tool UPPAAL
manipulates Temporized automata, that is to say tuples (L, [y, C, A, E,
D) where L is the set of locations, I, €L the initial location, C the set of
clocks, A the set of actions, co-actions and internal actions, E the set of
edges between the locations with an action, a guard and a set of clocks
to be reset, and I assigns invariants to the locations [48]. As part of the
proposed approach, the temporized aspect and the invariants are not
considered. Thus, the built models are Finite state automata in the form
(L, ly, A, E) where edges E may just be provided from an action and
a guard. Besides, we will thereafter only use the term “state”, under-
stood as “location” if a UPPAAL automaton is considered. Along with
the state models construction, it is necessary to formalize the selected
requirements (Al.3 in Fig. 3). To that end, the language adopted is the
Computation Tree Logic (CTL) because its simplified version constitutes
the input language of UPPAAL and it is a commonly used language in
the context of formal methods [13,29,49]. The chosen structure is the
following:

AG (a imply b)

where a, b are propositions, A is the All operator (all future possible
paths) and G is the operator Globally meaning always in the future. So,
this statement signifies: in a given state, for all possible paths and for all
future states in each possible path, if a becomes true, then b becomes
true too. In the context of this study, a is a condition for a change of
state and (possibly) a state, while b is a state. To express the condition a
contained in a requirement written in natural language, some variables
and parameters are extracted. The variables represent the evolution of
measurable data, such as velocity or acceleration, while the parameters
are special values of the variables. These data may be defined in other
documents (than Requirements Document) or have to be determined, to be
further discussed with experts. Up to now, the simplest formula has been
chosen. Other operators, allowing to express more advanced temporal
notions, can be used at a latter stage. For instance, this will enable to
precise the maximum time between the fulfillment of the condition and
the effective state change, as illustrated the following formula:

AG (a imply (AX b))

It means that the state b is reached exactly at the next state (or after
one clock tick if the modeling is temporized [49], operator X stand-
ing for “next”) once the condition a is verified. These operators types
can particularly be employed when more implementation details will be
available. It may also give a criterion of comparison between different
possible implementations of the designed function.

All requirements are translated in this way and formal expressions
for all transitions are determined, then verified thanks to UPPAAL. This
permits to proceed to the last activity of the state models construction
(A1.4 of the Fig. 3).

Finally, two state models with their associated assumptions, listed
in the Assumptions Document (interpretation assumptions and modeling
assumptions) are obtained. This concludes the first two activities (Al
and A2) of the whole deployed method (Fig. 2).

33

Reliability Engineering and System Safety 174 (2018) 29-40
3.4. Experts competence confrontation

The taken assumptions must be confronted to the experts. This is
the purpose of the activities A3 and A4 of the approach (Fig. 2). Some
inconsistencies and weaknesses in the requirements can already be han-
dled (so at a very early stage of the design process). It is a question
of a confrontation between the formal behavior models, done by mod-
eling experts (building the behavior models), and the system experts
(designers and safety engineers) knowledge. The modeling and inter-
pretation assumptions are reviewed, during working sessions, involving
both modeling experts and system experts that have provided analyzed
requirements. These activities result in two models: FBM; and SBM;.

Each incomplete requirement shall be treated. Indeed, these require-
ments may be interpreted in several ways. However, one interpreta-
tion has to be chosen for each requirement. In this way, modeling ex-
perts submit one main design and some variants to system experts. Sev-
eral possible simulations deduced from the initial requirements are pre-
sented. Because these simulations are limited to only one state change, it
is not relevant to use UPPAAL abilities to undertake this task (the simu-
lations are in fact direct). After that, one interpretation (corresponding
to a given simulation) of each requirement can be chosen by systems
experts. The initial requirements are then reformulated, according to
the selected interpretation, and might be source of new requirement(s)
too. Regarding modeling assumptions, they are actually validated before
performing the study.

Besides, the graphical view and the relevant aggregation of require-
ments, initially expressed in massive documents, dramatically ease the
error detection in requirements, without loss of rigor.

The confrontation with experts allows underlining an added value
of the proposed method. Additional assumptions required to build cor-
rect state models lead to modify the requirements, and to clearly formu-
late some taken hypotheses (often corresponding to undertones). So far,
there are no automatized (but semi-automatized) links between require-
ments, inferred formal properties and state models. A work prospect is
precisely to create these links allowing to automatically update the spec-
ifications according to both functional and safety viewpoints. This might
significantly facilitate the two processes integration.

In conclusion of these activities, two correct state models are ob-
tained but one cannot verify functional requirements on SBM; and safety
requirements on FBM;. In fact, the functional viewpoint does not con-
sider any failure occurrence and addresses the whole function while the
safety requirements are allocated to sub-functions and focus on failure
events. Given that the two requirements types concern the same func-
tion, one must ensure that the function supervision effectively verifies
all selected requirements. For this purpose, it is needed to construct a
behavior model on which all selected requirements can be verified. This
is the aim of the so-called Complete Behavior Model (CBM).

3.5. Complete behavior model development

The two state models FBM; and SBM; specify the supervision of the
same function upon two different viewpoints. The correctness of these
two models with regard to the selected requirements has been proved
by formal verification on the one hand, and thanks to the experts as-
sessment, on the other hand. To make the two points of view consistent,
we propose an approach based on automata composition. That is why
the tool Supremica is used to achieve the activity A5 (Fig. 2) of the pro-
posed method. As for UPPAAL, the use of Supremica in the context of
this work shall be precised. The objects manipulated by this tool are
Finite state automata defined by the tuples (Q, q;, Q, Q, X, §) where
Q is the finite set of states, g; the initial state, Q, the set of forbidden
states, Q,, the set of marked states, = the alphabet, finite set of events,
and é the transition function defined such that 6(q;, 6) = g where c €X
[44]. The notions of marked states and forbidden states are not used in this
study. This means that the tuples (Q, g;, Z, §) are manipulated. As part of
this study the same types of objects, than those previously presented in

R. Cuer et al.

Reliability Engineering and System Safety 174 (2018) 29-40

FBM1 FBMexpected
i FBMexpected
Reqm(r;;p%nts Requirements
modifie =
Formal properties When clopenises i
prop Formal properties
FBMoblalned = FBMexpecled
Synchronous CBM
. Composition
Assumptions SBM, P Assumptions
SBM, SBM;

F BMobtalned

While FBMgptaines # FBMeypected

Input data of activity AS

Output data of activity A5

Fig. 5. Graphical overview of the activity AS5.

UPPAAL context, are manipulated, with L and Q the set of locations (UP-
PAAL) and states (Supremica), I, and g; the initial location (UPPAAL)
and state (Supremica), A and ¥ the set of actions (UPPAAL) and events
(Supremica), E and 6 the set of edges (UPPAAL) and transition functions
(Supremica). The difficulties of translation of an automaton described
in the tool UPPAAL to Supremica, raised in [50], are not encountered
here. In fact, as underlined in [50], an event in Supremica is possible
only if it is allowed in each synchronized automaton. However, in UP-
PAAL, two types of communication are possible. The communication
via binary channels involving two automata and ensuring that the event
is executed only if both automata allow it. Broadcast channels imple-
ment the other type of communication. It involves several (more than
two) automata. The shared event can occur even if all automata are not
in a location allowing it. Given that only communication between two
automata (involving binary channels in UPPAAL environment) are con-
sidered in this study, the translation does not cause particular problems.
Nevertheless, if broadcast channels had been considered, the translation
would be less straightforward.

As shown in Fig. 5, the basic idea is to determine the whole func-
tion supervision in case of a sub-function failure through the state
model called FBM,yeeq (first step). In practice, starting from the
global function supervision, described by FBM;, the reaction in case of
a sub-function failure is determined (so at the global function level).
FBM ypecreq cOTresponds then to FBM, enriched by the specification of
behavior in case of any sub-function failure. Then the automata of SBM;
are iteratively modified (automata of SBM, in Fig. 5) until their paral-
lel composition (named FBM pineq) actually corresponds t0 FBMgypecred
(second step). Eventually, a Complete Behavior Model (CBM) can be
determined. It is composed of FBM gyecreq and SBM3, as well as the cor-
responding requirements, formal properties and assumptions taken.

More precisely, the first step consists in determining F BM,, ,.c10q =
(Qexs Giex> Zexs 0ox) from FBM| = (Qf1,4;71- 241, 8,1) in such a way that
Qex = Qfl U Qsafe’ Giex = qifl’zex = 2’fl U Zfail! 6ex(qfl! O-fail) = qsafe
where Qg is the set of safe states, Xq; the set of foreseen failures,
Qsafe € Qs and 044 € gy This activity is done jointly with designers
and safety engineers in order to define together Qyqf,, Zgyy and Sy

The second step is the iterative modification of the automata of
SBM; until the resulting automaton of their synchronized product is
identical to FBMypecreq defined in the precedent step. It means that
the concurrent behaviors of the N sub-functions (see Fig. 4) is then
compliant with the global expected behavior. Specifically, we have
SBM, = {Ail, A?l, N Aﬁ}, where Aﬁl(j € [1, N]) is the automaton de-
scribing the behavior of the ih sub-function supervision, and FBMgxpecteds
and one searches SBM; = {A!, A2, ..., AN}, such that FBMypectea =

53’
ALNIAL | - | AN, (where || is the symbol of the synchronized product).

34

The states of the automata Ai3 (G € [1,N]) are defined such that
Gex = (q)5, @%, > 4}). As the determination of FBMypecreq, it is achieved
in collaboration with designers and safety engineers. Then the transi-
tions of the automata of SBM; are modified until the obtention of the de-
sired equality (FBM,, o 1eq = A1l A% || - [[AX). This second step seeks
make the vocabulary between functional view and safety one consis-
tent and ensure, through the definitions of the states q,,, that no poten-
tially dangerous global states (such as mentioned in Section 3.3) may be
reached. Currently, this step remains a modeling process led in collabo-
ration with system designers and safety engineers. Its aim is to reach the
adequacy between the perceptions of the engineering and the safety. In
order to improve the consistency of this process, this step is integrated
in a systems engineering approach.

As the precedent activities of the approach, new assumptions are
issued. During the activity A6 (see Fig. 2), these assumptions are then
confronted with the experts in the same way that for the activities A3
and A4. As previously, some requirements are reformulated and new
requirements are defined.

To illustrate the interest of the proposed method, the next section
describes its application in an industrial context.

4. Case study
4.1. Autonomous driving function

Most of current vehicles are equipped with many Electric/Electronic
(E/E) components, such as: sensors, actuators, Electronic Control Units
(ECUs), harnesses wires... The E/E equipment implements some func-
tions, organized in a functional architecture. As highlighted in [51], the
main advantage of the functional architecture is to be stable and in-
dependent from physical implementation (one functional architecture
could be the common root for a wide variety of implementations). The
functional architecture of autonomous vehicle includes the AD function
in the way depicted in Fig. 6. According to the data (relative to the envi-
ronmental conditions, the driver behavior and the vehicle state) sent by
the blocks Localization, Perception and Enabling systems, the AD function
computes continuously a trajectory command that is transmitted to the
actuators (block Acting). The perception functionalities and the trajec-
tory calculation constitute significant and active search fields [52-55].
Moreover, the AD function can be in different states (active, available...
more details on these states are given in the paragraphs 4.4, 4.5). The
functional block AD management level rightly manages the states of the
AD function and, more specifically, the sub-block Supervision has to per-
manently determine in which state the AD function must be. The su-
pervision of these states is at the core of this work. In particular, in a
specific state of the AD function, called MRM, standing for Minimal Risk

R. Cuer et al.

Localization

Perception

AD function
Fusion

Trajectory planning

|

Object
Detection &
Classification

Lane detection
Traffic sign J
recognition —

Acting

Steering

Braking

PWT Torque

s

Enabling systems AD management level

Display &
Vehicle Commands &
Tire Pressure monitoring Sound
Monitoring Driver Supervision inx::g;n [T°] | external lighting
L
Lateral Doors i ,7

1

Authorization

Gear ratio
actuation

Fig. 6. Simplified functional architecture of an autonomous vehicle.

Maneuver, the vehicle carries out different predetermined maneuvers to
keep the vehicle safe under any circumstances. The safety requirements
precisely specify this aspect. It highlights the crucial significance of the
consideration of risks analysis results at the first step of the AD system
design.

4.2. Description of the input data

As recently underlined in [7], it is particularly challenging to clearly
define requirements on AD function, given that the multiple areas in-
volved. In the context of this study, it has been stated that the two re-
quirements types studied are defined in the way described in 3.3.

The functional requirements define then conditions to commute from
one state to another that mainly depend on environment evolutions,
vehicle global state and driver behavior. They also determine specific
actions to perform in different states. Functional requirements are about
175. Here follow two examples:

FR1: “AD function shall not be available within a construction area.”
FR2: “If AD function is active, then the HMI shall always give infor-
mation of the autonomous vehicle status”

For this application, the safety requirements are allocated to three
redundant sub-functions (called main_AD, sub_AD and AD-3) that to-
gether perform the global AD function and are structured according to
the architecture depicted in the Fig. 4, as illustrates the Fig. 7. The safety
requirements specify redundancy policy and reconfiguration manage-
ment. More particularly, they determine safety barriers that shall be
implemented by the blocks of the functional architecture (Fig. 6). About
350 safety requirements have been treated. Below are two examples of
such requirements:

SR1: “In case of an excessive deceleration due to a failure of sub_AD,
AD-3 shall switch itself on”
SR2: “SPF (Single Point Fault) Metric of AD-3 shall comply with target

value 99 percent”

The expected states for the two points of view, determined after dis-
cussions with AD system designers and safety engineers, are the follow-
ing:

o The states of the AD function from the functional perspective: Off,
Not available, Available, Activatable and Active;

o The states of the three sub-functions regarding the safety viewpoint:
main_AD: Off, Active, MRM, sub_AD: Off, Standby, On and AD-3:
Standby, On.

35

Reliability Engineering and System Safety 174 (2018) 29-40

AD function
Main_AD
Supervision_main

Sub_AD
Safety

AD_3
Functional —
Requirements Supervision

Fig. 7. Simplified architecture of AD function.

4.3. Selection of relevant requirements (A1.1 and A2.1)

The FR1 and the SR1 are chosen while the FR2 and the SR2 are re-
jected. In fact, FR1 gives a condition to enter in the state Not available
while SR1 also precises a condition to switch to the state ON. So they
both respect the defined criterion (in Section 3.3). Conversely, FR2 in-
dicates what the AD function must do when it is in the state Active, so
no state change is mentioned and the criterion is not respected. SR2
concerns the reliability of the component performing AD-3. More pre-
cisely, the Single Point Fault Metric is a notion of the ISO-26262 standard
[56] reflecting the robustness of a system to single point faults (faults
that directly cause the violation of a vehicle level safety requirement).
This metric quantifies, by means of failure rates ratio, the coverage of
the single point fault. Hence it is not relative to a state change too.

Finally, about 20 percent of the initial safety requirements (73) and
40 percent of the initial functional requirements (70) were selected.

4.4. Functional Behavior Model construction (A1.2)

After selecting relevant functional requirements, the construction of
the Functional Behavior Model may be undertaken. To do this, some
assumptions have to be made. For example, FR1 specifies that the AD
function shall enter in the state Not available if the vehicle stands in
a construction area (understood as zone of roadworks). However, one
cannot determine if the initial state is Off, Available, Activatable or Active.
That is why 15 possibilities, that could be gathered in four cases, have
been considered:

1. the initial state is one of the four states (4 possibilities). It means
that 4 state models may be built: in the first model, the initial state
is Off, in the second one, it is Available, in the third one, Activatable
and in the last one, Active;

2. the initial states are two of the four states (6 possibilities);

. the initial states are three of the four states (4 possibilities);

4. the initial states are the four states (1 possibility).

w

This constitutes an interpretation assumption that is reported in the
Assumptions Document (Fig. 3). FR1 actually belongs to a group of re-
quirements that define conditions to enter in the state Not available. The
interpretation assumption concerns in reality all the requirements of this
group. In the same way, 4 other groups of requirements determining
conditions to enter or to exit the states of AD function have been cre-
ated. Each group conducts to interpretation assumptions, so to different
possible versions of the state model. The interpretation assumptions for
the 4 other groups respectively lead to 3, 4, 15 and 46 possibilities.
This potentially corresponds to a huge number of possibilities (so state

R. Cuer et al.

AD_function_supervision

T1==1

Off Not_available Available

Activatable

Active

Fig. 8. Functional Behavior Model (FBM).

model versions), but, similarly to the FR1 group, the possibilities can be
gathered in cases, easing the forthcoming confrontation work.

The Fig. 8 represents a version of the FBM. The transitions Ti (i=0
to 7) contain the different conditions to commute from one state to an-
other, defined in the selected functional requirements. The state Active
is the only state perceptible by the driver. Indeed, in this state the driv-
ing is completely delegated to the AD system and no driver intervention
is required, whatever the situation. The other states correspond to the
initialization phase, they are intermediate states permitting to propose
the AD function to the driver only when required conditions are met. It
has been stated that the transitions to enter in a “more active” state (Tj
with j={0, 1, 3, 5}) are defined in this way: Tj is true if all conditions
of its guard are true (AND logical) while the transitions to switch to a
“less active” state (Tk with k={2, 6, 7}) are determined as follows: Tk
is true if only one condition of its guard is true (OR logical). This is a
modeling assumption written in the Assumptions Document (Fig. 3).

Otherwise, the four cases above-mentioned (interpretation assump-
tion of FR1) are taken into account in the transitions content:

1. The guard of each transition that leads to the state Not available (TO,
T2, T6, T7) includes the condition about construction area;

2. The guards of the transitions between two of four states (all states ex-
cept Not available) and the state Not available contain the condition
about construction area.

The same applies for the two last cases. So the 15 versions of FBM,
corresponding to the 15 possible interpretations of FR1 described ear-
lier, have practically (T7 is not always present) the same graphical as-
pect. In fact, only the contents of the guards of the transitions leading
to the state Not available are modified according to each interpretation.

4.5. Safety Behavior Model construction (A2.2)

The same approach is adopted to build the Safety Behavior Model.
An aggregated version of the SBM obtained is represented in the Fig. 9.
It is called aggregated because all elements are not depicted to im-
prove readability. For instance, many consequences of a main_AD fail-
ure are actually considered but they can be all gathered in the generic
event main AD failure! because they lead to the state Off of the Supervi-
sion_ main. SBM is composed of three automata describing the behavior
under failure of the three sub-functions performing the global AD func-
tion. The safety point of view focuses on the sub-functions reaction in
case of one sub-function failure. The redundancy policy specified is a
cold redundancy. In fact, the sub-function main_AD is normally always
active and the sub-function sub_AD intervenes only in case of main_ AD
loss. If the sub_AD is lost, either main_AD takes action or AD-3 inter-
venes, according to the failure type (sub AD_failurel or sub_AD failure2)
causing the sub_AD loss. With regard to the safety viewpoint, only mod-
eling assumptions have to be made. Effectively, observing parameters

36

Reliability Engineering and System Safety 174 (2018) 29-40

Supervision_main
Supervision_main
MRM sub_AD_failure1? ACTIVE main_AD_failure! o
O enter_main_MRMx:=1 main_AD_fail:=1 ’O
Supervision_sub
Supervision_sub sub_AD_failure1!
STANDBY

ON

O

main_AD_failure? Okk

enter_sub_MRMx:=1

sub_AD_fail2:=1

Supervision 3 sypervision_3

STANDBY

ON

-0

Fig. 9. Safety Behavior Model (SBM).

sub_AD_failure2?
enter_ad3_MRMx:=1

have to be introduced to enable modeling. For example, the boolean pa-
rameter enter main. MRMx indicates if the sub-function main_AD is en-
tered in the MRM state by activating a Minimal Risk Maneuver (MRM)
x (there are actually several MRM according to the failure types). The
reason to add these observing parameters is to enable the properties
verification in UPPAAL. Indeed, in the query language, it is not pos-
sible to include directly the channels in formal properties. So to ver-
ify if the event main AD failure! has occurred, one checks the value of
main_AD fail.

4.6. Formalization of requirements (A1.3 and A2.3)

Concerning the functional requirements, the translation is not im-
mediate. Take the example of FR1 (“AD function shall not be avail-
able within a construction area.”). To translate this requirement, we
choose to define a boolean variable construction area in this way:
construction_area==0 means that the vehicle is not in a construction area
while construction_area==1 signifies otherwise. As explained above, dif-
ferent interpretations of FR1 have been proposed. Consequently, FR1
could be translated in different ways, according to the possibilities pre-
viously presented. For example, if we choose that there is one initial
state and this state is Available, we obtain the following statement (FP
stands for Functional Property):

FP1-1: AG((construction_area==1 && AD_function.Available) imply
(AD_function.Not_Available))

The index 1-1 indicates that FP1-1 is the interpretation 1 of the ini-
tial FR1 (there are actually 14 others).

For the safety requirements, the translation is more straightforward.
In fact, all the selected requirements are formulated in the same way of
the example requirement SR1 (“In case of an excessive deceleration due
to a failure of sub AD, AD-3 shall switch itself on”). This statement is
then translated like this (SP1 standing for Safety Property 1):

SP1: AG(sub_excess_decel2==1 imply AD-3.0N)

sub_excess_decel2 is here a particular case of sub AD_fail2 of the SBM
(see Fig. 9). This requirement can be formulated more generally in this
way:

AG(sub_AD_fail2==1 imply AD-3.0N)

All the selected requirements have been translated in this manner
and formally verified in UPPAAL. This ensures the correctness of the
state models with regard to the selected requirements.

4.7. Confront state models to designers (A3 and A4)

With respect to the FBM, the correct interpretation of each require-
ment necessitating one has to be chosen. For the requirement example

R. Cuer et al.

AD_function_supervision

Not_available T1==1

Available

Off

Active

Activatable

Fig. 10. Functional Behavior Model, (FBM;).

(FR1), the interpretation 1, earlier described, was the good one, for the
reasons given in the next paragraph. Accordingly, a new requirement
formulation for initial FR1, called FR1-1, has to be written:

FR1-1: “If AD function is in the state Available and the autonomous
vehicle stands in a construction area, then AD function shall
switch to the state Not available”

For each interpretation assumption, a choice has to be made. It
should be noted that certain choices are very significant for the design.
For the taken example (FR1), the interpretation adopted does not mean
that AD function does nothing when it is in the state Active and the
vehicle enters in a construction area. Indeed, when it happens, more
specific requirements based on more precise environment information
indicate the actions required. The information about construction area
mentioned in FR1 just allows avoiding to propose AD function to driver
at a wrong time. Moreover, the analysis of FR1 conducts to the defini-
tion of another requirement, named FR1a. In fact, if the vehicle enters
in a construction area while the AD function is in the state Activatable,
an action is required and has to be specified. This is precisely the role
of the new requirement FR1a:

FR1la: “If AD function is in the state Activatable and the autonomous ve-
hicle stands in a construction area, then AD function shall switch
to the state Available”

Given their complexities and their number, all choices have still not
been made. Consequently, the modified FBM, named FBM;, represented
in the Fig. 10, is the most recent and stable version of the state model.
The FBM; contains an additional transition T4 face to the FBM depicted
in Fig. 8. Indeed, FR1a, for example, gives a condition to commute from
the state Activatable to the state Available, so the guard of T4 contains
(at least) this condition. Furthermore, the transition T7 has been fi-
nally deleted. This transition corresponded actually to interpretations of
FR1 finally not retained. Each transition has to be defined by choosing
the correct interpretation of the initial functional requirements. Oth-
erwise, these initial requirements have been meanwhile modified and
completed too.

For the SBM, the Supervision_3 specified by the selected require-
ments did not actually correspond to the experts expectation. In fact, AD-
3 shall intervene in case of simultaneous loss of sub-functions main_AD
and sub_AD (due to common cause failure). Yet, it has been specified
that AD-3 had to take action in case of particular failures affecting the
sub_AD function (see Fig. 9). That is why, some initial requirements have
to be deleted, and new requirements have been expressed in order to be
compliant with the experts advice. For instance, since SR1 specified re-
action of AD-3 in case of sub_AD loss, a modified requirement, replaced
the original SR1, and called SR1a, has been written:

37

Reliability Engineering and System Safety 174 (2018) 29-40

Supervisios ain
ISupervision_main i
ad3 =

MRM - ACTIVE . OFF
enter_main_MRMy™= main_AD_failure!
. mainAD_fail:=1 O

sub_AD_failure?

enter_main_MRMx:=1

Supervision_sub
Supervision_sub

STANDBY
ON £ ra? sub AD failure

° > B

enter_sub_MRMx:=1 subAD_fail:=1

OFF

O

Supervision_3

OFF

O

Supervision_3
STANDBY

ON

O

ad3_failure!

enter_ad3_MRMx:=1

mainAD_fail==1 && subAD_fail==1

Fig. 11. Safety Behavior Model; (SBM;).

SR1la: “In case of an excessive deceleration due to a failure of sub_AD
and a failure of main_AD, AD-3 shall switch itself on” Fig. 11
illustrates the modified SBM resultant, called SBM; (like SBM, it
is a question of an aggregated model). In addition, the main_ AD
function has to enter in the state MRM in case of failure of AD-3.

This event were actually not considered in SBM (Fig. 9).

Finally, 29 new requirements have been written to specify the AD-3
in case of simultaneous failure affecting main_AD and sub_AD while 5
requirements have been deleted. Indeed, they did not correctly specified
the AD-3.

As sated in Section 3.4, the two models FBM; and SBM; are different
in terms of states, transitions, events and abstraction levels. To ensure
global consistency and completeness, it is needed to build a Complete
Behavior Model, compliant both with functional requirements and with
safety requirements.

4.8. Complete Behavior Model construction (A5)

As explained in the description of the activity A5 (see Section 3.5),
the first step consists in determining expected global AD function su-
pervision (state model named FBM,.q) in case of foreseen failures oc-
currence. Since four groups of failures (main AD failure, sub AD failure,
ad3 failure and AD failure) have been identified and treated, four global
states, called MRMm, MRMs, MRM3, MRMms and reached respec-
tively after the events main AD failure, sub AD_failure, ad3 failure and
AD failure, shall be added to the FBM;. These global states are, in ac-
cordance with the local safety requirements (see Fig. 11), reached only
from the state Active. The four groups of failures make up Xg;; (defined
in Section 3.5) the four global states constitute Qyqy,, and the events
leading to these states correspond to §,,. The resulting expected state
model (called FBM e req) is represented in Fig. 12.

Then, to start the second step, the states of the automata SBM; are
determined such as ¢,, = (q;3, q§3, q33). In fact, the parallel composition
of the automata forming SBM; gives an automaton whose each state
is a configuration of the states of the three local supervision functions.
It is then necessary to determine the authorized states configurations,
corresponding to the nominal global states. The main idea is to avoid
that two control functions are in states in which they can command
actuators (see Section 3.3). Effectively, if actuators receive two or more
commands, it could lead to vehicle instability. The states concerned are,
from the functional point of view: Active and, from the safety one: Active
and MRM (broken into four states). This operation is done, also in con-
junction with safety engineers and AD system designers, and the result
is shown in Table 1.

Once this correspondence is achieved, it is then possible to proceed to
local behavior models modifications (automata of SBM;). This operation
is done from two perspectives:

e Functional point of view: according to the redundancy policy, the
main_AD function is ordinary active and ensures the AD function

R. Cuer et al.

AD_function_supervision

T1==1" Available

Off

Not_available

4==

main_ADNailure!

MRM3 Active
O —=
ad3_failure!
_failure! Activatable
sub_AD/ failure!
MRMms
MRMs
Fig. 12. FBM ,ppcrea-
Table 1
Authorized states configurations.

FBM xpected Main_AD Sub_AD AD_3
Off Off Off Off
Not_available Not_available = Not_available Available
Available Available Available Available
Activatable Activatable Activatable Available
Active Active Activatable Available
MRMs MRM Silent Available
MRM3 MRM Activatable Silent
MRMm Silent MRM Available
MRMms Silent Silent MRM

when it is authorized. That is why, the state Active shall only appear
on the model of the Supervision main. On the contrary, the sub_AD
function and the AD-3 functions are not ordinary active and take
control uniquely after a failure occurrence. Thus no state Active must
appear in the Supervision_sub model and in the Supervision_3 one. Be-
sides, all functions can be in an initialization state. That is why the
states Not available, Available and Activatable replace, by detailing,
the state Standby of Supervision main and Supervision_sub. Since the
AD-3 function takes control solely in case of common cause failure
affecting both main_AD and sub_AD, it is just required that AD-3 is
in the state Available when the other functions are active;

o Safety viewpoint: each AD sub-function is capable to ensure secured
maneuvers in case of treated failures occurrence. Thus, the state
MRM can actually be reached by each local supervision. For the
sake of clarity, the states called ON in Supervision sub and Supervi-
sion_3 (see Fig. 11) are renamed MRM. Note that the state MRM is
only reachable from the Active state. It means that the reaction of
the AD function in case of sub-function failure is, for now, specified
only when the whole AD function is active (in accordance with the
safety requirements). In the same way, the state named OFF is re-
called Silent, because it is reached after a failure of the sub-function
considered. The state Off is kept but in the functional sense, i.e. it is
reached when power supply is switched off.

These considerations help to complete the automata of SBM; by giv-
ing indications for adjusting the states of the automata. Then, one veri-
fies if the automata modified in this way are correct by performing their
parallel composition thanks to Supremica. This result is compared to the
FBM gypecreq depicted in the Fig. 12. When the automaton thus obtained
is identical (in the sense defined in the description of the second step of

activity A5, in Section 3.5), the local automata forming SBM are correct

38

Reliability Engineering and System Safety 174 (2018) 29-40

Not_available

Supervision_main

T1

() Available

T3

Activatable

sub AD failure T5

ad3_failure

Supervision_3
Not_available

Supervision_sub

Silent

vailable

MRM

T
available Not_available Available
Not_available

ilable Available Available
Available

MRM.Activatable. Silerft
T3
Silent MRM.Available
MRMm
main_AD failure

glivatable Available

Activatable

Activatable)
Active Activatable Available

AD failure T5

MRM.SilentAvailable

MRMs Silent.Silent. MRM

Mms

Fig. 14. FBM p,qincq-

with respect to global AD function supervision. The correct automata
thus obtained (forming SBM,) are represented in the Fig. 13. The au-
tomaton resulting from their composition is represented in the Fig. 14.
The states presented in bold type are the states of the FBM_¢cq Such as
defined in the Table 1. This proves that the three state models for the Su-
pervision_main, the Supervision sub and the Supervision_3 are correct with
regard to the expected global AD function supervision.

Nonetheless, some assumptions have again been formulated to build
the CBM. Certain are realistic and might result in new requirements for-
mulation, such as the states repartition reported in the Table 1. Thus,
after confronting the taken assumptions with safety engineers and de-
signers (activity A6 of the method, Fig. 2), about 70 new requirements
for the main_AD and 35 for the sub_AD have been formulated. Other
hypotheses are however not acceptable, like the consideration of a sub-
function loss only when the global AD function is active, or the implicit
assumption of perfect transitions synchronization (for example, T1 cor-
responds to the same event for main_AD and sub_AD in the Fig. 13).
This points out the necessity to take into account certain constraints of
the implementation in the proposed modeling. This aspect constitutes a
perspective of the works presented in this paper.

R. Cuer et al.
5. Conclusions

The introduction of the Autonomous Driving function makes the au-
tomotive embedded system in charge of its realization particularly safety
critical. An appropriate approach has to be determined in order to avoid
all design errors and to take into account as many requirements as pos-
sible from the design phase. This paper precisely contributes to this im-
portant work and proposes a formal-based method that both improve
requirements formulation and system modeling at the beginning of the
design process.

The approach proposed has allowed to build from requirements,
originally expressed in natural language, a unique and complete formal
behavior model, correct by construction. Besides, requirements are con-
solidated at the outset of the design process. Mainly, two means allow
to improve requirements. First, the formalization underlines certain de-
ficiencies, such as requirements formulation incompleteness. Secondly,
the clear and readable presentation of the results (in the graphical form)
largely facilitates the search for requirements errors. Indeed, it is more
convenient to find mistakes in behavior specification when it is repre-
sented in the form of state models, without loss of rigor. Lastly, it should
be noted that this approach, even it is partially automatized, relies on
expert knowledge too.

Generally speaking, the proposed method takes place in the context
of the so-called intrinsic safety, as defined in [57]. Thus it ensures that
all already foreseen events are properly considered: for each possible
event, a system reaction is specified. Unplanned events from the design
beginning are then out of scope. Otherwise, the method is focused on
verification process and requirements formulation, and is not enough
integrated in the whole systems engineering process. Moreover, the be-
haviors of components supporting the function studied are, in this study,
not sufficiently rigorously taken into account too.

Consequently, two aspects will then further investigate. On the one
hand, the use of modeling language (SysML, EAST-ADL) and tools al-
ready available (Rational Doors,* SysML modeler) to integrate the ap-
proach in more general MBSE (Model Based Systems Engineering) con-
text and increase its re-usability will be studied. On the other hand,
the formalization of constraints implementations in order to seamlessly
consider them in the framework proposed will be addressed.

References

[1] Fagnant DJ, Kockelman K. Preparing a nation for autonomous vehicles: opportuni-
ties, barriers and policy recommendations. Transp Res Part A 2015;77:167-81.
Anderson JM, Kalra N, Stanley KD, Sorensen P, Samaras C, Oluwatola OA. Au-
tonomous vehicle technology: A Guide for policymakers. RAND Corporation; 2014.
9780833083982.

Taofifenua O, Chale H, Gaudré T, Topa A, Levy N, Boulanger J. Reducing the gap
between formal and informal worlds in automotive safety-critical systems. In: 21th
annual INCOSE international symposium, Denver, USA; 2011. Presented also at IEEE
5th Annual International System Conference, Montreal, April 2011.

Maurer M, Winner H. Automotive systems engineering. Springer Science & Business
Media; 2013. 978-3-642-36455-6.

Kaiser B, Klaas V, Schulz S, Herbst C, Lascych P. Integrating system modelling with
safety activities. In: International conference on computer safety, reliability, and
security. Springer; 2010. p. 452-65.

Weissnegger R., Pistauer M., Kreiner C., Romer K., Steger C.. A novel method to
speed-up the evaluation of cyber-physical systems (ISO 26262). In: 12th Interna-
tional workshop on intelligent solutions in embedded systems, WISES 2015, Ancona,
Italy, October 29-30. p. 109-114.

Koopman P, Wagner MD. Autonomous vehicle safety: an interdisciplinary challenge.
IEEE Intell Transp Syst Mag 2017;9(1):90-6.

Kalra N, Paddock SM. Driving to safety: how many miles of driving would it take to
demonstrate autonomous vehicle reliability? Transp Res Part A 2016;94:182-93.
Mauborgne P, Deniaud S, Levrat E, Bonjour E, Micalli J-P, Loise D. Operational and
system hazard analysis in a safe systems requirement engineering process application
to automotive industry. Saf Sci 2016;87:256-68.

Taofifenua O. Ontology centric design process : sharing a conceptualization. Con-
servatoire national des arts et metiers - CNAM; 2012. Phd dissertation.

Owens BD, Herring MS, Dulac N, Leveson NG, Ingham MD, Weiss KA. Application
of a safety-driven design methodology to an outer planet exploration mission. In:
2008 IEEE aerospace conference; 2008. p. 1-24.

[2]

[3

=

[4]

[5

[}

[6

)

[7

—

[8

[}

[9]

[10]

[11]

4 http://www-03.ibm.com/software/products/fr/ratidoor.

39

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]
[29]

[30]

[31]

[32]

[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

Reliability Engineering and System Safety 174 (2018) 29-40

Mairtin L, Schatalov M, Hagner M, Goltz U, Maibaum O. A methodology for mod-
el-based development and automated verification of software for aerospace systems.
In: 2013 IEEE aerospace conference; 2013. p. 1-19.

Boulanger J-L. Formal methods applied to industrial complex systems: implementa-
tion of the b method. 1st. Wiley-IEEE Press; 2014. 1848217099, 9781848217096.
Behm P, Benoit P, Faivre A, Meynadier J-M. Mtor: asuccessful application of B in a
large project. Springer Berlin Heidelberg; 1999. p. 369-87.

Broy M. Challenges in automotive software engineering. In: Proceedings of the 28th
international conference on software engineering. New York, NY, USA: ACM; 2006.
Leveson NG. An approach to designing safe embedded software. In: International
workshop on embedded software. Springer; 2002. p. 15-29.

Chen D, Johansson R, Lnn H, Blom H, Walker M, Papadopoulos Y, et al. Integrated
safety and architecture modeling for automotive embedded systems. E & I Elek-
trotechnik und Informationstechnik 2011;128(6):196-202.

Kang E-Y, Enoiu EP, Marinescu R, Seceleanu C, Schobbens P-Y, Pettersson P. A
methodology for formal analysis and verification of EAST-ADL models. Reliab Eng
Syst Saf 2013;120:pp.127-138.

Cressent R, Idasiak V, Kratz F, David P. Mastering safety and reliability in a model
based process. In: Proceedings - annual reliability and maintainability symposium;
2011. p. pp.1-6.

David P, Idasiak V, Kratz F. Reliability study of complex physical systems using
sysml. Reliab Eng Syst Saf 2010;95(4):431-50.

Gilidemann M, Ortmeier F. A framework for qualitative and quantitative formal mod-
el-based safety analysis. In: 12th IEEE high assurance systems engineering sympo-
sium, HASE 2010, San Jose, CA, USA, November 3-4, 2010; 2010. p. 132-41.
Pétin J-F, Evrot D, Morel G, Lamy P. Combining SysML and formal methods for safety
requirements verification. In: 22nd international conference on software & systems
engineering and their applications, Paris, France; 2010. p. CDROM.

Liu X, Zhu Z. Construct aspectual models from requirement documents for mod-
el-driven development of automotive software. Electron Notes Theor Comput Sci
2011;274:pp.33-50.

Nouacer R, Djemal M, Niar S, Mouchard G, Rapin N, Gallois J, et al. EQUITAS: a
tool-chain for functional safety and reliability improvement in automotive systems.
Microprocess Microsyst - Embedded Hardware Des 2016;47:252-61.

Roussel J-M, Denis B. Safety properties verification of ladder diagram programs.
Journal Européen des Systémes Automatisés (JESA) 2002;36(7):pp.905-917.

Baier C, Katoen J-P. Principles of model checking (representation and mind series).
The MIT Press; 2008. 026202649X, 9780262026499.

Apvrille L, Becoulet A. Prototyping an embedded automotive system from its
UML/sysml models. Proc Embedded Real Time SystSoftw 2012:pp.87-124.

Sharvia S, Papadopoulos Y. Integrating model checking with HiP-HOPS in mod-
el-based safety analysis. Reliab Eng Syst Saf 2015;135:64-80.

Bitsch F. Safety patterns-the key to formal specification of safety requirements. In:
SAFECOMP, 2187. Springer; 2001. p. 176-89.

Evrot D, Pétin J-F, Morel G, Lamy P. Using sysml for identification and refinement
of machinery safety properties. IFAC Proc 2007;40(6):127-32. 1st IFAC Workshop
on Dependable Control of Discrete Systems.

Ghazel M, Yang J, El-Koursi E-M. A pattern-based method for refining and formal-
izing informal specifications in critical control systems. J Innovation Digital Ecosyst
2015;2(1):32-44.

Roussel J-M, Lesage J-J. Algebraic synthesis of logical controllers despite inconsis-
tencies in specifications. In: 11th international workshop on discrete event systems,
WODES 2012, Guadalajara, Mexico; 2012. p. 307-14. 8 pages.

Ramadge PJ, Wonham WM. Supervision of discrete event processes. In: 1982 21st
IEEE conference on decision and control; 1982. p. 1228-9.

Zaytoon J, Riera B. Synthesis and implementation of logic controllers a review. Annu
Rev Control 2017;43(Supplement C):152-68.

Larsen KG, Pettersson P, Yi W. Uppaal in a nutshell. Int J Softw Tools TechnolTrans-
fer 1997;1:134-52.

Larsson F, Larsen KG, Pettersson P, Yi W. Efficient verification of real-time systems:
compact data structures and state-space reduction. In: Proc. of the 18thIEEE real-time
systems symposium. IEEE Computer Society Press; 1997. p. 14-24.

Larsen KG, Pettersson P, Yi W. Compositional and symbolic model-checking of re-
al-time systems. In: Proc. of the 16th IEEE real-time systems symposium. IEEE Com-
puter Society Press; 1995. p. 76-87.

Lindahl M, Pettersson P, Yi W. Formal design and analysis of a gear controller. In:
International conference on tools and algorithms for the construction and analysis
of systems. Springer; 1998. p. 281-97.

David A, Yi W. Modelling and analysis of a commercial field bus protocol. In: Pro-
ceedings of the 12th Euromicro conference on real time systems. IEEE Computer
Society; 2000. p. 165-72. 0-7695-0734-4.

Hessel A, Pettersson P. Model-based testing of a wap gateway: an industrial case-s-
tudy. Tech. Rep.; 2006. Technical Report 2006-045, ISSN 1404-3203.

Pohl K, Rupp C. Requirements engineering fundamentals: a study guide for the cer-
tified professional for requirements engineering exam - foundation level - IREB com-
pliant. Rocky Nook, Inc.; 2011. 978-1-4571-1192-1.

Holt J, Perry SA, Brownsword M. Model-based requirements engineering. Institution
of Engineering and Technology; 2012. 978-1-84919-487-7

of Electrical I., Engineers E.. ISO/IEC/IEEE 29148:2011(E) systems and software
engineering life cycle processes requirements engineering. 2011.

Akesson K, Fabian M, Flordal H, Vahidi A. Supremica — a tool for verification and
synthesis of discrete event supervisors. In: Proceedings of the 11th mediterranean
conference on control and automation. Rhodos, Greece; 2003.

Markovski J, van de Mortel-Fronczak JM. Modeling for safety in a synthesis-centric
systems engineering framework. In: International conference on computer safety,
reliability, and security. Springer; 2012. p. 36-49.

http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0001
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0001
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0001
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0002
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0003
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0003
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0003
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0003
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0003
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0003
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0003
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0003
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0004
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0004
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0004
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0004
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0005
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0005
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0005
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0005
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0005
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0005
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0006
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0006
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0006
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0007
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0007
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0007
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0008
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0008
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0008
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0008
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0008
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0008
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0008
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0009
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0009
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0010
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0010
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0010
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0010
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0010
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0010
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0010
http://www-03.ibm.com/software/products/fr/ratidoor
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0011
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0011
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0011
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0011
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0011
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0011
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0012
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0012
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0012
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0013
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0013
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0013
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0013
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0013
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0014
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0014
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0015
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0015
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0016
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0016
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0016
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0016
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0016
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0016
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0016
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0016
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0017
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0017
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0017
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0017
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0017
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0017
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0017
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0018
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0018
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0018
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0018
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0018
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0019
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0019
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0019
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0019
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0020
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0020
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0020
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0021
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0021
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0021
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0021
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0021
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0022
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0022
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0022
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0023
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0024
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0024
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0024
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0025
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0025
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0025
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0025
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0026
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0026
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0026
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0027
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0027
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0027
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0028
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0028
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0029
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0029
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0029
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0029
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0029
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0029
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0030
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0030
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0030
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0030
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0031
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0031
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0031
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0031
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0032
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0032
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0032
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0033
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0033
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0033
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0034
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0034
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0034
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0034
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0035
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0035
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0035
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0035
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0035
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0036
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0036
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0036
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0036
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0037
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0037
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0037
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0037
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0038
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0038
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0038
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0038
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0039
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0039
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0039
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0039
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0040
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0040
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0040
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0040
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0041
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0041
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0041
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0041
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0041
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0042
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0042
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0042
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0042
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0042
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0043
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0043
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0043

R. Cuer et al.

[46]

[47]

[48]

[49]

[50]

[51]

Mohajerani S, Malik R, Fabian M. Compositional synthesis of supervisors in the form
of state machines and state maps. Automatica 2017;76:277-81.

Rohée B, Riera B, Carré-Ménétrier V, Roussel J-M. A methodology to design and
check a plant model. In: 3rd IFAC workshop on discrete-event system design (DES-
Des’06). Rydzyna, Poland; 2006. p. pp.246-250.

Behrmann G, David A, Larsen K. A tutorial on UPPAAL. In: Lecture Notes in Com-
puter Science. Springer; 2004. p. 200-36. VII/3185.

Bitsch F. Classification of safety requirements for formal verification of software
models of industrial automation systems. In: Proceedings of the 13th conference on
software and systems engineering and their applications. Citeseer; 2000.

Koolmees B. Reniers M. Markovski J.. Validation of modeled behavior using uppaal,
Master’s thesis, University of Technology Eindhoven.

Behere S, Térngren M. A functional reference architecture for autonomous driving.
Inf Softw Technol 2016;73:136-50.

40

[52]

[53]

[54]

[55]

[56]
[57]

Reliability Engineering and System Safety 174 (2018) 29-40

Do QH, Niknejad HT, Mita S, Egawa M, Muto K, Yoneda K. Human drivers based
active-passive model for automated lane change. IEEE Intell Transp Syst Mag
2017;9(1):42-56.

Falcone P, Borrelli F, Asgari J, Tseng HE, Hrovat D. Predictive active steer-
ing control for autonomous vehicle systems. IEEE Trans Control Syst Technol
2007;15(3):566-80.

You F, Zhang R, Lie G, Wang H, Wen H, Xu J. Trajectory planning and tracking
control for autonomous lane change maneuver based on the cooperative vehicle
infrastructure system. Expert Syst Appl 2015;42(14):5932-46.

Mu G, Xinyu Z, Deyi L, Tianlei Z, Lifeng A. Traffic light detection and recognition
for autonomous vehicles. J China Univ Posts Telecommun 2015;22(1):50-6.

ISO 26262 - Road vehicles Functional safety. Tech. Rep. Geneva, Switzerland; 2011.
Boulanger J. CENELEC 50128 And IEC 62279 standards. Wiley; 2015.
9781119005056.

http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0044
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0044
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0044
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0044
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0045
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0045
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0045
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0045
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0045
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0046
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0046
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0046
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0046
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0046
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0047
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0047
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0048
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0048
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0048
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0049
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0049
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0049
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0049
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0049
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0049
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0049
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0050
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0050
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0050
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0050
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0050
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0050
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0051
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0051
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0051
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0051
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0051
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0051
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0051
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0052
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0052
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0052
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0052
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0052
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0052
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0054
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0054
http://refhub.elsevier.com/S0951-8320(17)30591-4/sbref0054

	A formal framework for the safe design of the Autonomous Driving supervision
	1 Introduction
	2 Related works
	3 Proposed methodology
	3.1 Automotive embedded systems design
	3.2 Approach overview
	3.3 State models construction
	3.4 Experts competence confrontation
	3.5 Complete behavior model development

	4 Case study
	4.1 Autonomous driving function
	4.2 Description of the input data
	4.3 Selection of relevant requirements (A1.1 and A2.1)
	4.4 Functional Behavior Model construction (A1.2)
	4.5 Safety Behavior Model construction (A2.2)
	4.6 Formalization of requirements (A1.3 and A2.3)
	4.7 Confront state models to designers (A3 and A4)
	4.8 Complete Behavior Model construction (A5)

	5 Conclusions
	 References

